Citation: | Zebin WANG, Junbiao LIU, Aiguo CHEN, Dazheng WANG, Pengfei WANG, Li HAN. Optimization of electron beams for ion bombardment secondary emission electron gun[J]. Plasma Science and Technology, 2025, 27(3): 035501. DOI: 10.1088/2058-6272/ad9819 |
Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields, and the fluorescence signal intensity is positively correlated with the electron beam current. The ion bombardment secondary emission electron gun is suitable for the technology. To enhance the beam current, COMSOL simulations and analyses were conducted to examine plasma density distribution in the discharge chamber under the effects of various conditions and the electric field distribution between the cathode and the spacer gap. The anode shape and discharge pressure conditions were optimized to increase plasma density. Additionally, an improved spacer structure was designed with the dual purpose of enhancing the electric field distribution between the cathode-spacer gaps and improving vacuum differential effects. This design modification aims to increase the pass rate of secondary electrons. Both simulation and experimental results demonstrated that the performance of the optimized electron gun was effectively enhanced. When the electrode voltage remains constant and the discharge gas pressure is adjusted to around 8 Pa, the maximum beam current was increased from 0.9 mA to 1.6 mA.
[1] |
Chen A G et al 2021 Phys. Gases 6 67 (in Chinese) doi: d.wanfangdata.com.cn/periodical/qtwl202105010
|
[2] |
Choi Y M et al 2021 Flow Meas. Instrum. 82 102074 doi: 10.1016/j.flowmeasinst.2021.102074
|
[3] |
Nili-Ahmadabadi M et al 2021 Eur. Phys. J. Plus. 136 953 doi: 10.1140/epjp/s13360-021-01947-2
|
[4] |
Estevadeordal J et al 2018 Appl. Phys. B 124 41 doi: 10.1007/s00340-018-6908-y
|
[5] |
Chen A G et al 2024 J. Exp. Fluid Mech. 1 8 (in Chinese) doi: 10.11729/syltlx20210192
|
[6] |
Diop B et al 2011 Sensors 11 5202 doi: 10.3390/s110505202
|
[7] |
Lewis B M et al 2004 IEEE Trans. Plasma Sci. 32 1242 doi: 10.1109/TPS.2004.827572
|
[8] |
Whaley D R et al 2000 IEEE Trans. Plasma Sci. 28 727 doi: 10.1109/27.887712
|
[9] |
Ustinovskii N N et al 1994 Rev. Sci. Instrum. 65 2941 doi: 10.1063/1.1144582
|
[10] |
Muntz E P 1968 The electron beam fluorescence technique Technical Editing and Reproduction Ltd., Paris, France
|
[11] |
Cherenshchikov S A et al 1955 AIP Conf. Proc. 337 350 doi: inspirehep.net/literature/388585
|
[12] |
Chalise P R et al 2004 IEEE Trans. Plasma Sci. 32 1392 doi: 10.1109/TPS.2004.831594
|
[13] |
Zhou K et al 2014 Rev. Sci. Instrum. 85 093304 doi: 10.1063/1.4895604
|
[14] |
Szapiro B and Rocca J J 1989 J. Appl. Phys. 65 3713 doi: 10.1063/1.342600
|
[15] |
Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583 doi: 10.1109/TDEI.2007.369517
|
[16] |
Wang D, He Y N and Cui W Z 2018 J. Appl. Phys. 124 053301 doi: 10.1063/1.5035486
|
[17] |
Feng Z H et al 2024 Appl. Phys. Lett. 125 134101 doi: 10.1063/5.0223522
|
[18] |
Huo W J et al 2024 Plasma Sci. Technol. 26 055501 doi: 10.1088/2058-6272/ad113e
|
[19] |
Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722 doi: 10.1088/0963-0252/14/4/011
|
[20] |
Zhao S X et al 2009 J. Appl. Phys. 105 083306 doi: 10.1063/1.3112009
|
[21] |
Korolev Y D et al 2022 Plasma Sources Sci. Technol. 31 074002 doi: 10.1088/1361-6595/ac7902
|
[22] |
Boggasch E et al 1991 Phys. Rev. Lett. 66 1705 doi: 10.1103/PhysRevLett.66.1705
|
[23] |
Salikeev S et al 2014 Vacuum 99 303 doi: 10.1016/j.vacuum.2013.02.009
|
[24] |
Qiu X L et al 2023 Appl. Phys. Lett. 122 092902 doi: 10.1063/5.0140950
|
[25] |
Fu W J et al 2010 Appl. Phys. Lett. 96 071502 doi: 10.1063/1.3310280
|
[1] | Min ZHU, Yuchen PING, Yinghao ZHANG, Chaohai ZHANG, Shuqun WU. Discharge and mass transfer characteristics of atmospheric pressure gas-solid two-phase gliding arc[J]. Plasma Science and Technology, 2024, 26(9): 094009. DOI: 10.1088/2058-6272/ad61a2 |
[2] | Erhao GAO, Keying GUO, Qi JIN, Li HAN, Ning LI, Zuliang WU, Shuiliang YAO. NaCl aqueous solution as a novel electrode in a dielectric barrier discharge reactor for highly efficient ozone generation[J]. Plasma Science and Technology, 2023, 25(7): 075502. DOI: 10.1088/2058-6272/acbef6 |
[3] | Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4 |
[4] | Heping LI (李和平), Dingxin LIU (刘定新). Editorial: Plasma biomedicine[J]. Plasma Science and Technology, 2018, 20(4): 40101-040101. DOI: 10.1088/2058-6272/aab2b7 |
[5] | Hongshan ZHU (祝宏山), Shengxia DUAN (段升霞), Lei CHEN (陈磊), Ahmed ALSAEDI, Tasawar HAYAT, Jiaxing LI (李家星). Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115501. DOI: 10.1088/2058-6272/aa8168 |
[6] | Qingsong GAO (高青松), Yongjun LIU (刘永军), Bing SUN (孙冰). Characteristics of gas-liquid diaphragm discharge and its application on decolorization of brilliant red B in aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115404. DOI: 10.1088/2058-6272/aa8593 |
[7] | Antonio MERCADO-CABRERA, Rosendo PEÑA-EGUILUZ, Régulo LóPEZ-CALLEJAS, Bethsabet JARAMILLO-SIERRA, Raúl VALENCIA-ALVARADO, Benjamín RODRíGUEZ-MéNDEZ, Arturo E MUÑOZ-CASTRO. Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution[J]. Plasma Science and Technology, 2017, 19(7): 75501-075501. DOI: 10.1088/2058-6272/aa6715 |
[8] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), CHEN Longwei (陈龙威), FEI Juntao (费峻涛), GAO Ying (高莹), WEN Wen (文文), SHAN Minglei (单鸣雷), REN Zhaoxing (任兆杏). Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value[J]. Plasma Science and Technology, 2014, 16(12): 1126-1134. DOI: 10.1088/1009-0630/16/12/08 |
[9] | LU Na(鲁娜), FENG Yingchun(冯迎春), LI Jie(李杰), SU Yan(宿艳), SHANG Kefeng(商克峰), WU Yan(吴彦). Electrical Characteristics of Pulsed Corona Discharge Plasmas in Chitosan Solution[J]. Plasma Science and Technology, 2014, 16(2): 128-133. DOI: 10.1088/1009-0630/16/2/08 |
[10] | HAO Xiaolong (郝小龙), ZHANG Xingwang (张兴旺), LEI Lecheng (雷乐成). The Catalytic Effect of Metal Ions on the Degradation of 4-Chlorophenol Induced by an Aqueous Pulsed Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(7): 677-684. DOI: 10.1088/1009-0630/15/7/14 |