Citation: | Zhi LI, Tiantian SUN, Bing LIU, Feng WANG, Xiangfeng WU, Y-K Martin PENG, Xiao XIAO, Guanchao ZHAO (赵冠超), Lianliang MA (马连良), Yingying LI, Zhanhong LIN, Haozhe KONG, Yunfeng LIANG, Huasheng XIE, Jiaqi DONG, Yuejiang SHI, Di LUO, Xinchen JIANG, Yumin WANG, Xiang GU, Xueyun WANG, Muzhi TAN, Hairong HUANG, Danke YANG, Jianqing CAI (蔡剑青), Lili DONG (董力立), Quanyun WANG, Minsheng LIU, the EHL-2 Team. Evaluation of thermal and beam-thermal p-11B fusion reactions in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024004. DOI: 10.1088/2058-6272/ad9da2 |
This paper presents the first comprehensive simulation study of p-11B fusion reactions in a spherical torus. We developed relevant program modules for fusion reactions based on energetic particle simulation frameworks and analyzed the two main fusion channels: thermal and beam-thermal. Using EHL-2 design parameters with nboron=0.07nion and a hydrogen beam at 200 keV and 1 MW, our simulation indicates that p-11B reactions produce approximately 1.5×1015 α particles per second (~ 0.7 kW) from the thermal channel, and 5.3×1014 (~ 0.25 kW) from the beam-thermal channel. We conducted parameter scans to establish a solid physics foundation for the high ion temperature conditions (Ti>26keV) designed for EHL-2. This work also laid the groundwork for studying various operation modes to explore different reaction channels. The simulation results suggest that the conditions in EHL-2 could be sufficient for investigating p-11B thermonuclear reactions. In addition, we found that EHL-2 offered good confinement for energetic particles, allowing us to research the interactions between these ions and plasmas. This research enhances our understanding of burning plasma physics.
This work was supported by ENN Group and ENN Energy Research Institute. The authors would like to express sincere gratitude to the EHL-2 physics and engineering design team for their contributions to this project. We also thank Beijing PARATERA Tech Corp., Ltd. for providing computational resources. Furthermore, we would like to extend our special thanks to Youjun Hu, Associate Researcher at the Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China, for his invaluable help and guidance throughout this project.
[1] |
Lawson J D 1957 Proc. Phys. Soc. B 70 6 doi: 10.1088/0370-1301/70/1/303
|
[2] |
Wurzel S E and Hsu S C 2022 Phys. Plasmas 29 062103 doi: 10.1063/5.0083990
|
[3] |
Peng Y K et al 2020 “Toroidal plasma conditions where the p-11B fusion Lawson criterion could be ease” Preprint on Res. Square https://doi.org/10.21203/rs.3.rs-93644/v1
|
[4] |
Xie H S et al 2023 Plasma Phys. Control. Fusion 65 055019 doi: 10.1088/1361-6587/acc8f9
|
[5] |
Oliphant M L E and Rutherford L 1933 Proc. Roy. Soc. A: Contain. Pap. Math. Phys. Charact. 141 259
|
[6] |
Dee P I and Gilbert C W 1936 Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 154 279
|
[7] |
Becker H W, Rolfs C and Trautvetter H P 1987 Z. Phys. At. Nucl. 327 341 doi: 10.1007/BF01284459
|
[8] |
Stave S et al 2011 Phys. Lett. B 696 26 doi: 10.1016/j.physletb.2010.12.015
|
[9] |
Beckman O, Huus T and Zupančič Č 1953 Phys. Rev. 91 606 doi: 10.1103/PhysRev.91.606
|
[10] |
Segel R E, Hanna S S and Allas R G 1965 Phys. Rev. 139 B818 doi: 10.1103/PhysRev.139.B818
|
[11] |
Symons G D and Treacy P B 1963 Nucl. Phys. 46 93 doi: 10.1016/0029-5582(63)90567-4
|
[12] |
Moreau D C 1977 Nucl. Fusion 17 13 doi: 10.1088/0029-5515/17/1/002
|
[13] |
Putvinski S V, Ryutov D D and Yushmanov P N 2019 Nucl. Fusion 59 076018 doi: 10.1088/1741-4326/ab1a60
|
[14] |
Sikora M H and Weller H R 2016 J. Fusion Energy 35 538 doi: 10.1007/s10894-016-0069-y
|
[15] |
Magee R M et al 2023 Nat. Commun. 14 955 doi: 10.1038/s41467-023-36655-1
|
[16] |
Ogawa K et al 2024 Nucl. Fusion 64 096028 doi: 10.1088/1741-4326/ad6615
|
[17] |
Liu M S et al 2024 Phys. Plasmas 31 062507 doi: 10.1063/5.0199112
|
[18] |
Liang Y F et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad981a
|
[19] |
Wang X Y et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ada9c3
|
[20] |
Gu X et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae72
|
[21] |
Kurskiev G S et al 2022 Nucl. Fusion 62 104002 doi: 10.1088/1741-4326/ac881d
|
[22] |
Bodner G et al 2022 Nucl. Fusion 62 086020 doi: 10.1088/1741-4326/ac70ea
|
[23] |
Nespoli F et al 2022 Nat. Phys. 18 350 doi: 10.1038/s41567-021-01460-4
|
[24] |
Shi Y et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9e8f
|
[25] |
Nagy A et al 2018 Rev. Sci. Instrum. 89 10K121 doi: 10.1063/1.5039345
|
[26] |
Lunsford R et al 2017 Nucl. Fusion 57 076008 doi: 10.1088/1741-4326/aa6cd3
|
[27] |
Wang F et al 2021 Chin. Phys. Lett. 38 055201 doi: 10.1088/0256-307X/38/5/055201
|
[28] |
Hu Y J et al 2023 Phys. Plasmas 30 092507 doi: 10.1063/5.0158503
|
[29] |
Kiptily V G et al 2023 Phys. Rev. Lett. 131 075101 doi: 10.1103/PhysRevLett.131.075101
|
[30] |
Nevins W M and Swain R 2000 Nucl. Fusion 40 865 doi: 10.1088/0029-5515/40/4/310
|
[31] |
Xie H S 2023 Comput. Phys. Commun. 292 108862 doi: 10.1016/j.cpc.2023.108862
|
[32] |
Munch M et al 2020 Eur. Phys. J. A 56 17 doi: 10.1140/epja/s10050-019-00016-8
|
[33] |
Janev R K and Gallagher J W 1984 J. Phys. Chem. Ref. Data 13 1199 doi: 10.1063/1.555727
|
[34] |
Boley C D, Janev R K and Post D E 1984 Phys. Rev. Lett. 52 534 doi: 10.1103/PhysRevLett.52.534
|
[35] |
Janev R K, Boley C D and Post D E 1989 Nucl. Fusion 29 2125 doi: 10.1088/0029-5515/29/12/006
|
[36] |
Janev R K and Smith J J 1993 Suppl. to Nucl. Fusion 4 195
|
[37] |
Suzuki S et al 1998 Plasma Phys. Control. Fusion 40 2097 doi: 10.1088/0741-3335/40/12/009
|
[38] |
Li Z et al 2024 Laser Part. Beams 42 e5 doi: 10.1017/lpb.2024.2
|
[39] |
Sun T et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad8dfb
|
[40] |
He J J et al 2016 Phys. Rev. C 93 055804 doi: 10.1103/PhysRevC.93.055804
|
[41] |
Kelley J H, Purcell J E and Sheu C G 2017 Nucl. Phys. A 968 71 doi: 10.1016/j.nuclphysa.2017.07.015
|
[42] |
Agostinelli S et al 2003 Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 506 250 doi: 10.1016/S0168-9002(03)01368-8
|
[43] |
Van Loef E V D et al 2002 Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 486 254 doi: 10.1016/S0168-9002(02)00712-X
|
[44] |
Ogawa K et al 2022 Fusion Sci. Technol. 78 175 doi: 10.1080/15361055.2021.1973294
|
[45] |
National Academies of Sciences, Engineering, and Medicine 2019 Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research (Washington, DC: The National Academies Press
|
[1] | Huasheng XIE, Xiang GU, Yumin WANG, Quanyun WANG, Feng WANG, Haozhe KONG, Jiaqi DONG, Yunfeng LIANG, Yueng-Kay Martin PENG, Minsheng LIU, the EHL-2 Team. Preliminary considerations and challenges of proton-boron fusion energy extraction on the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024010. DOI: 10.1088/2058-6272/adae43 |
[2] | Haowei ZHANG, Zhiwei MA. Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles[J]. Plasma Science and Technology, 2023, 25(4): 045105. DOI: 10.1088/2058-6272/aca6c0 |
[3] | Jixing YANG, Guoyong FU, Wei SHEN, Minyou YE. Linear hybrid simulations of low-frequency fishbone instability driven by energetic passing particles in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(6): 065101. DOI: 10.1088/2058-6272/ac5972 |
[4] | Yunpeng ZOU (邹云鹏), Minyou YE (叶民友). Alfvén eigenmode stability analysis and energetic particle transport prediction for CFETR hybrid scenario[J]. Plasma Science and Technology, 2019, 21(9): 95104-095104. DOI: 10.1088/2058-6272/ab2110 |
[5] | X T DING (丁玄同), W CHEN (陈伟). Review of the experiments for energetic particle physics on HL-2A[J]. Plasma Science and Technology, 2018, 20(9): 94008-094008. DOI: 10.1088/2058-6272/aad27a |
[6] | Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e |
[7] | WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03 |
[8] | SANG Ziru(桑子儒), LI Feng(李锋), JIANG Xiao(江晓), JIN Ge(金革). A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments[J]. Plasma Science and Technology, 2014, 16(4): 400-405. DOI: 10.1088/1009-0630/16/4/18 |
[9] | LI Yingying (李颖颖), FU Jia (符佳), SHI Yuejiang (石跃江), ZHANG Wei (张伟), SHEN Yongcai (沈永才), WANG Fudi (王福地), et al. Spectroscopic Measurement of Neutral Particle Influx Ratio on EAST[J]. Plasma Science and Technology, 2013, 15(6): 493-498. DOI: 10.1088/1009-0630/15/6/02 |
[10] | LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06 |