GUO Wei, WANG Shaojie, LI Jiangang. Vacuum Poloidal Magnetic Field of Tokamak in Alternating-Current Operation[J]. Plasma Science and Technology, 2010, 12(6): 657-660.
Citation:
GUO Wei, WANG Shaojie, LI Jiangang. Vacuum Poloidal Magnetic Field of Tokamak in Alternating-Current Operation[J]. Plasma Science and Technology, 2010, 12(6): 657-660.
GUO Wei, WANG Shaojie, LI Jiangang. Vacuum Poloidal Magnetic Field of Tokamak in Alternating-Current Operation[J]. Plasma Science and Technology, 2010, 12(6): 657-660.
Citation:
GUO Wei, WANG Shaojie, LI Jiangang. Vacuum Poloidal Magnetic Field of Tokamak in Alternating-Current Operation[J]. Plasma Science and Technology, 2010, 12(6): 657-660.
1, Department of Physics, Fudan University, Shanghai 200433, China 2, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 3, Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China 4, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Funds: supported by National Natural Science Foundation of China (No. 10875122) and the Chinese Academy of Sciences (No. kjcx-yw-n28).
Vacuum poloidal magnetic field of tokamak in alternating-current (AC) operation is investigated. It is found that the vacuum magnetic field in AC operation is qualitatively different from that in direct-current (DC) operation. In the DC case, the vacuum magnetic field varies along the poloidal direction with one period, while in the AC case, the vacuum magnetic field varies along the poloidal direction with two periods. This implies that two sets of vertical field coil may be needed for the AC operation.