Citation: | Yunfeng LIANG, Huasheng XIE, Yuejiang SHI, Xiang GU, Xinchen JIANG, Lili DONG, Xueyun WANG, Danke YANG, Wenjun LIU, Tiantian SUN, Yumin WANG, Zhi LI, Jianqing CAI, Xianming SONG, Muzhi TAN, Guang YANG, Hanyue ZHAO, Jiaqi DONG, Yueng-Kay Martin PENG, Shaodong SONG, Zhengyuan CHEN, Yingying LI, Bing LIU, Di LUO, Yuanming YANG, Minsheng LIU, the EHL-2 Team. Overview of the physics design of the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024001. DOI: 10.1088/2058-6272/ad981a |
ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p-11B fusion, establish spherical torus/tokamak experimental scaling laws at 10’s keV ion temperature, and provide a design basis for subsequent experiments to test and realize the p-11B fusion burning plasma. Based on 0-dimensional (0-D) system design and 1.5-dimensional transport modelling analyses, the main target parameters of EHL-2 have been basically determined, including the plasma major radius, R0, of 1.05 m, the aspect ratio, A, of 1.85, the maximum central toroidal magnetic field strength, B0, of 3 T, and the plasma toroidal current, Ip, of 3 MA. The main heating system will be the neutral beam injection at a total power of 17 MW. In addition, 6 MW of electron cyclotron resonance heating will serve as the main means of local current drive and MHD instabilities control. The physics design of EHL-2 is focused on addressing three main operating scenarios, i.e., (1) high ion temperature scenario, (2) high-performance steady-state scenario and (3) high triple product scenario. Each scenario will integrate solutions to different important issues, including equilibrium configuration, heating and current drive, confinement and transport, MHD instability, p-11B fusion reaction, plasma-wall interactions, etc. Beyond that, there are several unique and significant challenges to address, including
● establish a plasma with extremely high core ion temperature (Ti,0 > 30 keV), and ensure a large ion-to-electron temperature ratio (Ti,0/Te,0 > 2), and a boron concentration of 10%‒15% at the plasma core;
● realize the start-up by non-inductive current drive and the rise of MA-level plasma toroidal current. This is because the volt-seconds that the central solenoid of the ST can provide are very limited;
● achieve divertor heat and particle fluxes control including complete detachment under high P/R (> 20 MW/m) at relatively low electron densities.
This overview will introduce the advanced progress in the physics design of EHL-2.
This work was supported by ENN Group and ENN Energy Research Institute. The authors would like to express their gratitude for the contributions of the ENN fusion team and collaborators in supporting this endeavor. We are thankful to Laizhong CAI, Vincent CHAN, Jiakang CHEN, Huarong DU, Guoyong FU, Xiang GAO, Zhe GAO, Yong GUO, Baolong HAO, Guangzhou HAO, Xiwei HU, Youjun HU, Tuong HOANG, Yong-Seok HWANG, Akio ISHIDA, Mitsuru KIKUCHI, Haozhe KONG, Chunyan LI, Ding LI, Guangsheng LI, Hang LI, Zhanhong LIN, Dequan LIU, Lianliang MA, Takashi MAEKAWA, Wanjiang PAN, Jinping QIAN, Hong RAN, Hang SI, Xiao SONG, Youwen SUN, Yi TAN, Carlos Hidalgo VERA , Quanyun WANG, Xiaogang WANG, Xueren WANG, Howard WILSON, Clement PO-Ching WONG, Bin WU, Xiangfeng WU, Xiaohe WU, Tianyang XIA, Guosheng XU, Lei XUE, Longwen YAN, Gang YIN, Minyou YE, Qingquan YU, Xianmei ZHANG, and Haishan ZHOU for their constructive comments and discussions on this work.
[1] |
JET Team 1992 Nucl. Fusion 32 187 doi: 10.1088/0029-5515/32/2/I01
|
[2] |
Keilhacker M et al 1999 Nucl. Fusion 39 209 doi: 10.1088/0029-5515/39/2/306
|
[3] |
Maggi C F et al 2024 Nucl. Fusion 64 112012 doi: 10.1088/1741-4326/ad3e16
|
[4] |
Wan Y X et al 2017 Nucl. Fusion 57 102009 doi: 10.1088/1741-4326/aa686a
|
[5] |
Chapman I T, Cowley S C and Wilson H R 2024 Philos. Trans. Roy. Soc. A 382 20230416 doi: 10.1098/rsta.2023.0416
|
[6] |
Creely A J et al 2020 J. Plasma Phys. 86 865860502 doi: 10.1017/S0022377820001257
|
[7] |
Geser F A and Valente M 2020 Radiat. Phys. Chem. 167 108224 doi: 10.1016/j.radphyschem.2019.03.028
|
[8] |
Nevins W M 1998 J. Fusion Energy 17 25 doi: 10.1023/A:1022513215080
|
[9] |
Putvinski S V, Ryutov D D and Yushmanov P N 2019 Nucl. Fusion 59 076018 doi: 10.1088/1741-4326/ab1a60
|
[10] |
Ochs I E and Fisch N J 2024 Phys. Plasmas 31 012503 doi: 10.1063/5.0184945
|
[11] |
Margarone D et al 2022 Appl. Sci. 12 1444 doi: 10.3390/app12031444
|
[12] |
Stave S et al 2011 Phys. Lett. B 696 26 doi: 10.1016/j.physletb.2010.12.015
|
[13] |
Magee R M et al 2023 Nat. Commun. 14 955 doi: 10.1038/s41467-023-36655-1
|
[14] |
Cai J Q et al 2022 Fusion Sci. Technol. 78 149 doi: 10.1080/15361055.2021.1964309
|
[15] |
Xie H S and Wang X Y 2024 Plasma Phys. Control. Fusion 66 065009 doi: 10.1088/1361-6587/ad3f4b
|
[16] |
JET Team 1999 Nucl. Fusion 39 1875 doi: 10.1088/0029-5515/39/11Y/329
|
[17] |
Kishimoto H et al 2005 Nucl. Fusion 45 986 doi: 10.1088/0029-5515/45/8/026
|
[18] |
Hawryluk R J et al 1998 Phys. Plasmas 5 1577 doi: 10.1063/1.872825
|
[19] |
Peng Y K M and Strickler D J 1986 Nucl. Fusion 26 769 doi: 10.1088/0029-5515/26/6/005
|
[20] |
Gryaznevich M et al 1998 Phys. Rev. Lett. 80 3972 doi: 10.1103/PhysRevLett.80.3972
|
[21] |
Sykes A et al 2001 Phys. Plasmas 8 2101 doi: 10.1063/1.1352595
|
[22] |
Harrison J R et al 2024 Nucl. Fusion 64 112017 doi: 10.1088/1741-4326/ad6011
|
[23] |
Ono M et al 2001 Nucl. Fusion 41 1435 doi: 10.1088/0029-5515/41/10/311
|
[24] |
Menard J E et al 2017 Nucl. Fusion 57 102006 doi: 10.1088/1741-4326/aa600a
|
[25] |
Gusev V K et al 2009 Nucl. Fusion 49 104021 doi: 10.1088/0029-5515/49/10/104021
|
[26] |
McNamara S A M et al 2023 Nucl. Fusion 63 054002 doi: 10.1088/1741-4326/acbec8
|
[27] |
Wood J et al 2023 J. Instrum. 18 C03019 doi: 10.1088/1748-0221/18/03/C03019
|
[28] |
Liu M S et al 2024 Phys. Plasmas 31 062507 doi: 10.1063/5.0199112
|
[29] |
Theiler C et al 2017 Nucl. Fusion 57 072008 doi: 10.1088/1741-4326/aa5fb7
|
[30] |
Li Z et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9da2
|
[31] |
Wang F et al 2021 Chin. Phys. Lett. 38 055201 doi: 10.1088/0256-307X/38/5/055201
|
[32] |
Hu Y J et al 2023 Phys. Plasmas 30 092507 doi: 10.1063/5.0158503
|
[33] |
Becker H W, Rolfs C and Trautvetter H P 1987 Z. Phys. A Atomic Nuclei 327 341 doi: 10.1007/BF01284459
|
[34] |
Nevins W M and Swain R 2000 Nucl. Fusion 40 865 doi: 10.1088/0029-5515/40/4/310
|
[35] |
Li Z et al 2024 Laser Particle Beams 42 e5 doi: 10.1017/lpb.2024.2
|
[36] |
Suzuki S et al 1998 Plasma Phys. Control. Fusion 40 2097 doi: 10.1088/0741-3335/40/12/009
|
[37] |
Tamano T 1995 Phys. Plasmas 2 2321 doi: 10.1063/1.871256
|
[38] |
Wu M Y et al 2022 Phys. Plasmas 29 023508 doi: 10.1063/5.0073439
|
[39] |
Sikora M H and Weller H R 2016 J. Fusion Energy 35 538 doi: 10.1007/s10894-016-0069-y
|
[40] |
Xie H S 2024 Plasma Phys. Control. Fusion 66 125005 doi: 10.1088/1361-6587/ad877f
|
[41] |
Costley A E, Hugill J and Buxton P F 2015 Nucl. Fusion 55 033001 doi: 10.1088/0029-5515/55/3/033001
|
[42] |
Gu X et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae72
|
[43] |
Song X M et al 2019 Fusion Eng. Des. 147 111254 doi: 10.1016/j.fusengdes.2019.111254
|
[44] |
Jiang X C et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae71
|
[45] |
Pereverzev G and Yushmanov P N 2002 ASTRA Automated system for transport analysis in a tokamak IPP-Report IPP-5-98 Garching: Max-Planck-Institut fuer Plasmaphysik
|
[46] |
Wang X Y et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ada9c3
|
[47] |
Waltz R E et al 1997 Phys. Plasmas 4 2482 doi: 10.1063/1.872228
|
[48] |
Dong L L et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ada421
|
[49] |
Shi Y J et al 2022 Nucl. Fusion 62 086047 doi: 10.1088/1741-4326/ac71b6
|
[50] |
Shi Y J et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9e8f
|
[51] |
Ida K 2023 Rev. Mod. Plasma Phys. 7 23 doi: 10.1007/s41614-023-00126-3
|
[52] |
Bortolon A et al 2020 Nucl. Fusion 60 126010 doi: 10.1088/1741-4326/abaf31
|
[53] |
Sun Z et al 2021 Phys. Plasmas 28 082512 doi: 10.1063/5.0058809
|
[54] |
Nespoli F et al 2022 Nat. Phys. 18 350 doi: 10.1038/s41567-021-01460-4
|
[55] |
Görler T et al 2011 J. Comput. Phys. 230 7053 doi: 10.1016/j.jcp.2011.05.034
|
[56] |
Tan M Z et al 2025 Plasma Phys. Control. Fusion 67 025018 doi: 10.1088/1361-6587/ada824
|
[57] |
Tan M Z et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adad1a
|
[58] |
Kurskiev G S et al 2022 Nucl. Fusion 62 016011 doi: 10.1088/1741-4326/ac38c9
|
[59] |
Wagner F et al 1982 Phys. Rev. Lett. 49 1408 doi: 10.1103/PhysRevLett.49.1408
|
[60] |
Liang Y 2011 Fusion Sci. Technol. 59 586 doi: 10.13182/FST11-A11699
|
[61] |
Li K et al 2021 Nucl. Fusion 61 096002 doi: 10.1088/1741-4326/ac0f97
|
[62] |
Wang Y M et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9f27
|
[63] |
Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
|
[64] |
Liang Y et al 2007 Phys. Rev. Lett. 98 265004 doi: 10.1103/PhysRevLett.98.265004
|
[65] |
Liang Y et al 2010 Phys. Rev. Lett. 105 065001 doi: 10.1103/PhysRevLett.105.065001
|
[66] |
Kirk A et al 2013 Plasma Phys. Control. Fusion 55 124003 doi: 10.1088/0741-3335/55/12/124003
|
[67] |
Bondeson A and Ward D J 1994 Phys. Rev. Lett. 72 2709 doi: 10.1103/PhysRevLett.72.2709
|
[68] |
Liu Y Q, Kirk A and Sun Y 2013 Phys. Plasmas 20 042503 doi: 10.1063/1.4799535
|
[69] |
Liu Y Q et al 2008 Phys. Plasmas 15 112503 doi: 10.1063/1.3008045
|
[70] |
Sun T T et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad8dfb
|
[71] |
Liang Y F et al 2022 Plasma Sci. Technol. 24 124021 doi: 10.1088/2058-6272/acaa8d
|
[72] |
Wang F Q et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adadb8
|
[73] |
Zohm H et al 1995 Plasma Phys. Control. Fusion 37 A313 doi: 10.1088/0741-3335/37/11A/022
|
[74] |
Liang Y et al 2007 Nucl. Fusion 47 L21 doi: 10.1088/0029-5515/47/9/L02
|
[75] |
Cai J Q et al 2024 Plasma Sci. Technol. 26 055102 doi: 10.1088/2058-6272/ad1571
|
[76] |
Cai J Q et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adb40b
|
[77] |
Xie H S et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae43
|
[1] | Rongjing DENG, Tingfeng MING, Bang LI, Qiqi SHI, Shanwei HOU, Shuqi YANG, Xiaoju LIU, Shaocheng LIU, Guoqiang LI, Xiang GAO, Yasuhiro SUZUKI, Yunfeng LIANG. VUV imaging of type-I ELM filamentary structures and their temporal characteristics on EAST[J]. Plasma Science and Technology, 2024, 26(11): 114002. DOI: 10.1088/2058-6272/ad621c |
[2] | Bang LI (李邦), Tingfeng MING (明廷凤), Qing ZHUANG (庄清), Feifei LONG (龙飞飞), Shanlu GAO (高善露), Qiqi SHI (石奇奇), Yumin WANG (王嵎民), Xiaoju LIU (刘晓菊), Shaocheng LIU (刘少承), Long ZENG (曾龙), Xiang GAO (高翔). Experimental study of ELM-induced filament structures using the VUV imaging system on EAST[J]. Plasma Science and Technology, 2021, 23(3): 35104-035104. DOI: 10.1088/2058-6272/abda9d |
[3] | Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e |
[4] | Nan ZHAO (赵楠), Ning YAN (颜宁), Guosheng XU (徐国盛), Zhengxiong WANG (王正汹), Ran CHEN (陈冉), Huiqian WANG (汪惠乾), Liang WANG (王亮), Siye DING (丁斯晔), Linming SHAO (邵林明), Liang CHEN (陈良), Guanghai HU (胡广海), Wei ZHANG (张炜). The observation of small ELM post-cursor mode in EAST[J]. Plasma Science and Technology, 2018, 20(2): 24007-024007. DOI: 10.1088/2058-6272/aa9bd8 |
[5] | Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538 |
[6] | Xianzu GONG (龚先祖), Baonian WAN (万宝年), Jiangang LI (李建刚), Jinping QIAN (钱金平), Erzhong LI (李二众), Fukun LIU (刘甫坤), Yanping ZHAO (赵燕平), Mao WANG (王茂), Handong XU (徐旵东), A M GAROFALO, Annika EKEDAH, Siye DING (丁斯晔), Juan HUANG (黄娟), Ling ZHANG (张凌), Qing ZANG (臧庆), Haiqing LIU (刘海庆), Long ZENG (曾龙), Shiyao LIN (林士耀), Biao SHEN (沈飙), Bin ZHANG (张斌), Linming SHAO (邵林明), Bingjia XIAO (肖炳甲), Jiansheng HU (胡建生), Chundong HU (胡纯栋), Liqun HU (胡立群), Liang WANG (王亮), Youwen SUN (孙有文), Guosheng XU (徐国盛), Yunfeng LIANG (梁云峰), Nong XIANG (项农), EAST Team. Realization of minute-long steady-state H-mode discharges on EAST[J]. Plasma Science and Technology, 2017, 19(3): 32001-032001. DOI: 10.1088/2058-6272/19/3/032001 |
[7] | FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02 |
[8] | LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03 |
[9] | WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07 |
[10] | Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02 |