Advanced Search+
Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
Citation: Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e

A new model of the L–H transition and H-mode power threshold

Funds: This work was supported by National Natural Science Foundation of China under Contract Nos. 11575235 and 11422546, China Postdoctoral Science Foundation under Contract No. 2016M602043 and the National Magnetic Confinement Fusion Science Program of China under Con- tract No. 2015GB101002, Key Research Program of Frontier Sciences, CAS, Grant No. QYZDB-SSW-SLH001 and K C Wong Education Foundation.
More Information
  • Received Date: January 10, 2018
  • In order to understand the mechanism of the confinement bifurcation and H-mode power
    threshold in magnetically confined plasma, a new dynamical model of the L–H transition based
    on edge instability phase transition (EIPT) has been developed. With the typical plasma
    parameters of the EAST tokamak, the self-consistent turbulence growth rate is analyzed using
    the simplest case of pressure-driven ballooning-type instability, which indicates that the L–H
    transition can be caused by the stabilization of the edge instability through EIPT. The weak
    E×B flow shear in L-mode is able to increase the ion inertia of the electrostatic motion by
    increasing the radial wave number of the tilted turbulence structures, which play an important
    role for accelerating the trigger process of EIPT rather than directly to suppress the turbulent
    transport. With the acceleration mechanism of E×B flow shear, fast L–H and H–L transitions
    are demonstrated under the control of the input heating power. Due to the simplified scrape-off-
    layer boundary condition applied, the ratio between the heating powers at the H–L and L–H
    transition respectively differs from the ratio by Nusselt number. The results of the modeling
    reveal a scaling of the power threshold of the L–H transition, PL−Hn 0.76 B 0.8 for deuterium
    plasma. It is found finite Larmor radius induces an isotope effect of the H-mode power threshold.
  • [1]
    Wagner F et al 1982 Phys. Rev. Lett. 49 1408
    [2]
    Shimada M et al 2007 Nucl. Fusion 47 S1
    [3]
    Martin Y R and Takizuka T 2008 J. Phys.: Conf. Ser. 123 012033
    [4]
    Righi E et al 1999 Nucl. Fusion 39 309
    [5]
    Takizuka T and ITPA H-Mode Database Working Grp 2004 Plasma Phys. Control. Fusion 46 A227
    [6]
    Bourdelle C et al 2014 Nucl. Fusion 54 022001
    [7]
    Fukuda T et al 2000 Plasma Phys. Control. Fusion 42 A289
    [8]
    Ma Y et al 2012 Nucl. Fusion 52 023010
    [9]
    Chen L et al 2016 Nucl. Fusion 56 056013
    [10]
    McKee G R et al 2009 Nucl. Fusion 49 115016
    [11]
    Wagner F 2007 Plasma Phys. Control. Fusion 49 B1
    [12]
    Gohil P 2006 C. R. Phys. 7 606
    [13]
    Connor J W and Wilson H R 2000 Plasma Phys. Control. Fusion 42 R1
    [14]
    Rettig C L et al 1993 Nucl. Fusion 33 643
    [15]
    Tynan G R et al 1994 Phys. Plasmas 1 3301
    [16]
    Burrell K H et al 2004 Plasma Phys. Control. Fusion 46 A165
    [17]
    Kobayashi T et al 2013 Phys. Rev. Lett. 111 035002
    [18]
    Schmitz L et al 2012 Phys. Rev. Lett. 108 155002
    [19]
    Doyle E J et al 1991 Phys. Fluids B 3 2300
    [20]
    Xu G S et al 2014 Nucl. Fusion 54 103002
    [21]
    Schmitz L 2017 Nucl. Fusion 57 025003
    [22]
    Xu G S and Wu X Q 2017 Plasma Sci. Technol. 19 033001
    [23]
    Biglari H, Diamond P H and Terry P W 1990 Phys. Fluids B 2 1
    [24]
    Hinton F L and Staebler G M 1993 Phys. Fluids B 5 1281
    [25]
    Zhang Y Z and Mahajan S M 1992 Phys. Fluids B 4 1385
    [26]
    Terry P W 2000 Rev. Mod. Phys. 72 109
    [27]
    Diamond P H et al 1994 Phys. Rev. Lett. 72 2565
    [28]
    Liu A D et al 2009 Phys. Rev. Lett. 103 095002
    [29]
    Xu G S et al 2011 Phys. Rev. Lett. 107 125001
    [30]
    Cheng J et al 2013 Phys. Rev. Lett. 110 265002
    [31]
    Gurcan O D 2012 Phys. Rev. Lett. 109 155006
    [32]
    Waltz R E, Dewar R L and Garbet X 1998 Phys. Plasmas 5 1784
    [33]
    Staebler G M et al 2013 Phys. Rev. Lett. 110 055003
    [34]
    Staebler G M et al 2013 Nucl. Fusion 53 113017
    [35]
    Xu G S et al 2016 Phys. Rev. Lett. 116 095002
    [36]
    Rogers B N, Drake J F and Zeiler A 1998 Phys. Rev. Lett. 81 4396
    [37]
    Bishop C M 1986 Nucl. Fusion 26 1063
    [38]
    Bourdelle C et al 2012 Plasma Phys. Control. Fusion 54 115003
    [39]
    Bourdelle C et al 2015 Nucl. Fusion 55 073015
    [40]
    Xia T Y, Xu X Q and Xi P W 2013 Nucl. Fusion 53 073009
    [41]
    Xu X Q et al 2000 Phys. Plasmas 7 1951
    [42]
    Rasmussen J J et al 2016 Plasma Phys. Control. Fusion 58 014031
    [43]
    Nielsen A H et al 2015 Phys. Lett. A 379 3097
    [44]
    Li B et al 2015 Phys. Plasmas 22 112304
    [45]
    Li B et al 2016 Phys. Rev. E 94 043201
    [46]
    Li B et al 2017 Phys. Plasmas 24 055905
    [47]
    Weiland J 2012 Stability and Transport in Magnetic Confinement Systems (New York; London: Springer)
    [48]
    Wu X Q et al 2015 Nucl. Fusion 55 053029
    [49]
    Xu G S et al 2017 Nucl. Fusion 57 086047
    [50]
    Xu X Q et al 2013 Phys. Plasmas 20 056113
    [51]
    Xi P W et al 2012 Phys. Plasmas 19 092503
    [52]
    Chiueh T et al 1986 Phys Fluids 29 231
    [53]
    Doyle E J et al 2007 Nucl. Fusion 47 S18
    [54]
    Camenen Y et al 2011 Nucl. Fusion 51 073039
    [55]
    Kishimoto Y et al 1999 Plasma Phys. Control. Fusion 41 A663
    [56]
    Kim J Y et al 1996 Phys. Plasmas 3 3689
    [57]
    Miki K et al 2012 Phys. Plasmas 19 092306
    [58]
    Xu Y H et al 2000 Phys. Rev. Lett. 84 3867
    [59]
    Hinton F L 1991 Phys. Fluids B 3 696
    [60]
    Chatthong B and Onjun T 2016 Nucl. Fusion 56 016010
    [61]
    Waltz R E et al 1997 Phys. Plasmas 4 2482
    [62]
    Wesson J and Campbell D J 2004 Tokamaks (Oxford: Clarendon)
    [63]
    Wagner F and Stroth U 1993 Plasma Phys. Control. Fusion 35 1321
    [64]
    Xu Y H et al 1996 Phys. Plasmas 3 1022
    [65]
    Wootton A J et al 1990 Phys. Fluids B 2 2879
    [66]
    Lin Z et al 2007 Phys. Rev. Lett. 99 265003
    [67]
    Hahm T S et al 2004 Plasma Phys. Control. Fusion 46 A323
    [68]
    Wang Z H et al 2011 Nucl. Fusion 51 073009
    [69]
    Rhodes T L, Ritz C P and Bengtson R D 1993 Nucl. Fusion 33 1147
    [70]
    Liewer P C 1985 Nucl. Fusion 25 543
    [71]
    Hennequin P et al 2004 Plasma Phys. Control. Fusion 46 B121
    [72]
    Hennequin P 2006 C. R. Phys. 7 670
    [73]
    LaBombard B et al 2004 Nucl. Fusion 44 1047
    [74]
    Asakura N et al 2000 Phys. Rev. Lett. 84 3093
    [75]
    Porter G D et al 1999 J. Nucl. Mater. 266 917
    [76]
    Kallenbach A et al 2005 J. Nucl. Mater. 337 381
    [77]
    Fundamenski W et al 2012 Nucl. Fusion 52 062003
    [78]
    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol; Philadelphia: Institute of Physics Publishing)
    [79]
    Breger P et al 1998 Plasma Phys. Control. Fusion 40 347
    [80]
    Kallenbach A et al 2002 Nucl. Fusion 42 1184
    [81]
    Wan B N et al 2013 Nucl. Fusion 53 104006
    [82]
    Zohm H 1996 Plasma Phys. Control. Fusion 38 105
    [83]
    Miki K et al 2013 Phys. Plasmas 20 062304
    [84]
    Miki K et al 2013 Nucl. Fusion 53 073044
    [85]
    Ryter F et al 2013 Nucl. Fusion 53 113003
    [86]
    Ryter F et al 2009 Nucl. Fusion 49 062003
    [87]
    Sauter P et al 2012 Nucl. Fusion 52 012001
    [88]
    Shao L M et al 2016 Plasma Phys. Control. Fusion 58 025004
    [89]
    Ryter F et al 2014 Nucl. Fusion 54 083003
  • Related Articles

    [1]Ting WU (吴婷), Min XU (许敏), Lin NIE (聂林), Yi YU (余羿), Jianqiang XU (许健强), Ting LONG (龙婷), Yu HE (何钰), Jun CHENG (程钧), Longwen YAN (严龙文), Zhihui HUANG (黄治辉), Rui KE (柯锐), Peng SHI (石鹏), Shuo WANG (王硕), Bing LIU (刘兵). Effect of edge turbulent transport on scrape-off layer width on HL-2A tokamak[J]. Plasma Science and Technology, 2021, 23(2): 25101-025101. DOI: 10.1088/2058-6272/abd6b7
    [2]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Farideh HONARY, Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Threshold of parametric instability in the ionospheric heating experiments[J]. Plasma Science and Technology, 2018, 20(11): 115301. DOI: 10.1088/2058-6272/aac71d
    [3]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [4]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [5]Guosheng XU (徐国盛), Xingquan WU (伍兴权). Understanding L–H transition in tokamak fusion plasmas[J]. Plasma Science and Technology, 2017, 19(3): 33001-033001. DOI: 10.1088/2058-6272/19/3/033001
    [6]WU Guojiang(吴国将), ZHANG Xiaodong(张晓东). Analysis of the Variability of the L-H Transition Power Threshold in a Helium-4 Discharge[J]. Plasma Science and Technology, 2014, 16(6): 557-561. DOI: 10.1088/1009-0630/16/6/03
    [7]YE Qizheng (叶齐政), YU Dahai (于大海), CAI Huanqing (蔡焕青), SHAO Guiwei (邵瑰玮), et al.. Influence of the Transverse Field Component on the Edge Effect in a Short-Gap Discharge[J]. Plasma Science and Technology, 2013, 15(11): 1112-1115. DOI: 10.1088/1009-0630/15/11/07
    [8]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [9]ZANG Linge (臧临阁), M. TAKEUCHI, N. NISHINO, T. MIZUUCHI, S. OHSHIMA, K. KASAJIMA, M. SHA, K. MUKAI, et al. Observation of Edge Plasma Fluctuations with a Fast Camera in Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 213-216. DOI: 10.1088/1009-0630/15/3/04
    [10]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建), PENG Xiaodong (彭晓东). The electromagnetic instability in electron flow with ion background[J]. Plasma Science and Technology, 2010, 12(5): 523-528.

Catalog

    Article views (210) PDF downloads (503) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return