Advanced Search+
ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
Citation: ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11

Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005), National Natural Science Foundation of China (Nos. 11175035, 10875023), Chinesisch-Deutsches Forschungs Project (GZ768) and the Fundamental Research Funds for the Central Universities (DUT12ZD(G)01)
More Information
  • Received Date: August 27, 2013
  • Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical tool for real- time diagnostics and detection of multiple elements deposited at the first wall of magnetically confined plasma fusion devices. Recently, we have tested LIBS in our laboratory for application to in situ real-time diagnostics in the fusion device EAST. In this study, we applied polarization- resolved LIBS (PR-LIBS) to reduce the background continuum and enhance the resolution and sensitivity of LIBS. We used aluminium (Al) (as a substitute for Be) and the first wall materials tungsten (W) and molybdenum (Mo) to investigate polarized continuum emission and signal-to- background ratio (SBR). A Nd:YAG laser with first, second and third harmonics was used to produce plasma. The effects of the laser polarization plane, environmental pressure and polarizer detection angle were investigated. The spectra obtained without using a polarizer (i.e. LIBS) were compared with those obtained with a polarizer (PR-LIBS). Distribution of emission spectral intensity was observed to follow Malus’ law with respect to variation in the angle of detection of the polarizer. The spectra obtained by PR-LIBS had a higher SBR and greater stability than those obtained by LIBS, thereby enhancing the reliability of LIBS for quantitative analyses. A comparison of Al, Mo and W showed that W exhibited a higher continuum with stronger polarization than the low-Z elements.
  • 1 Rehse S, Salimnia H and Miziolek. 2012, J. Med. Eng.Technol., 36: 77;
    2 Harmon R S, De Lucia F C, Miziolek A W, et al. 2005,Geochem-Explor. Env. A, 5: 21;
    3 Sallé B, Cremers D A, Maurice S, et al. 2005, Spec-trochim. Acta B, 60: 805;
    4 Martin M Z, Wullschleger S and Garten C. 2002, The International Society for Optical Engineering, 2002:188;
    5 Tzortzakis S, Anglos D and Gray D. 2006, Opt. Lett.,31: 1139;
    6 Martin M Z, Labbé N, André N, et al. 2007, Spec-trochim. Acta B, 62: 1426;
    7 Gaudiuso R, Dell'Aglio M, Pascale O D, et al. 2010,Sensors, 10: 7434;
    8 Farid N, Li C, Wang H, et al. 2012, J. Nucl. Mater.,433: 80;
    9 Piip K, Laan M, Paris P, et al. 2013, First Wall Mon-itoring by LIBS: Options and Limitations. 40th EPS Conference on Plasma Physics (O6: 503), European physical Society Plasma Physics Division. Espoo, Fin-land;
    10 Maurya G S, Jyotsana A, Kumar R, et al. 2013, J.Nucl. Mater., 444: 23;
    11 Philipps V, Malaquias A, Hakola A, et al. 2013, Nucl.Fusion, 53: 093002;
    12 Gasior P, Bieda M, Kubkowska M, et al. 2011, Fusion Eng. Des., 86: 1239;
    13 Mercadier L, Hermann J, Grisolia C, et al. 2013, J.Anal. At. Spectrom., 28: 1446;
    14 Fantoni R, Almaviva S, Caneve L, et al. 2013, Spec-trochim. Acta B, 87: 153 Plasma Science and Technology, Vol.16, No.2, Feb. 2014;
    15 Semerok A and Grisolia C. 2012, Nuclear Instruments and Methods in Physics Research Section A, 720: 31;
    16 Hai R, Farid N, Zhao D, et al. 2013, Spectrochim. Acta B, 87: 147;
    17 Hai R, Li C, Wang H B, et al. 2013, J. Nucl. Mater.,438: S1168;
    18 Hai R, Xiao Q, Zhang L, et al. 2013, J. Nucl. Mater.,436: 118;
    19 Xiao Q, Huber A, Sergienko G, et al. 2013, Fusion Eng.Des., 88: 1813;
    20 Wan B. 2009, Nucl. Fusion, 49: 104011;
    21 Coad J, Bekris N, Elder J, et al. 2001, J. Nucl. Mater.,290: 224;
    22 Janeschitz G. 2001, J. Nucl. Mater., 290: 1;
    23 Diwakar P, Harilal S, Freeman J, et al. 2013, Spec-trochim. Acta B, 87: 65;
    24 Su M-G and Dong C-Z. 2013, Eur. Phys. J. Appl.Phys., 61: 30802;
    25 Baudelet M, Guyon L, Yu J, et al. 2006, J. Appl. Phys.,99: 084701;
    26 Cremers D A, Yueh F Y, Singh J P, et al. 2006, Laser-Induced Breakdown Spectroscopy, Elemental Analysis.Wiley Online Library;
    27 Asgill M, Moon H, Omenetto N, et al. 2010, Spec-trochim. Acta B, 65: 1033;
    28 Penczak J S, Liu Y, Schaller R D, et al. 2012, Spec-trochim. Acta B, 74-75: 3;
    29 Agnes N, Tao Hai-Yan, Hao Zuo-Qiang, et al. 2013,Chinese Physics B, 22: 014209;
    30 Penczak J S, Liu Y and Gordon R J. 2011, Spec-trochim. Acta B, 66: 186;
    31 Agnes N, Hao Zuo-Qiang, Jia Liu, et al. 2012, Chinese Physics B, 21: 074204;
    32 Neu R, Dux R, Kallenbach A, et al. 2005, Nucl. Fusion,45: 209;
    33 Litnovsky A, Wienhold P, Philipps V, et al. 2007, J.Nucl. Mater., 363: 1395;
    34 Eslami Majd A, Arabanian A and Massudi R. 2010,Optics and Lasers in Engineering, 48: 750;
    35 Miziolek A W, Palleschi V and Schechter I. 2006, Laser induced breakdown spectroscopy. Cambridge Univer-sity Press ;
    36 Farid N, Wang H, Li C, et al. 2013, J. Nucl. Mater.,438: 183
  • Related Articles

    [1]Yutong YANG, Yunfeng LIANG, Wei YAN, Shuangbao SHU, Jiankun HUA, Song ZHOU, Qinghu YANG, Jinlong GUO, Ziyang JIN, Wei XIE, the J-TEXT Team. Characteristics of divertor heat flux distribution with an island divertor configuration on the J-TEXT tokamak[J]. Plasma Science and Technology, 2024, 26(12): 125102. DOI: 10.1088/2058-6272/ad6816
    [2]Ruirong LIANG, Xianzu GONG, Bin ZHANG, Zhendong YANG, Manni JIA, Youwen SUN, Qun MA, Jiayuan ZHANG, Yunchan HU, Jinping QIAN, the EAST Team. Study on divertor heat flux under n = 3 and n = 4 resonant magnetic perturbations using infrared thermography diagnostic in EAST[J]. Plasma Science and Technology, 2022, 24(10): 105103. DOI: 10.1088/2058-6272/ac73e6
    [3]Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02
    [6]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [7]ZHANG Bin (张斌), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), ZHANG Xiaodong (张晓东), WANG Fumin (王福敏), YANG Zhendong (仰振东), CHEN Meiwen (陈美文), WANG Xiaoqiong (王晓琼), the EAST Team. Study of Divertor Heat Patterns Induced by LHCD L-Mode Plasmas Using an Infra-Red Camera System on EAST[J]. Plasma Science and Technology, 2015, 17(10): 831-836. DOI: 10.1088/1009-0630/17/10/04
    [8]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [9]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [10]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07

Catalog

    Article views (309) PDF downloads (1543) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return