Advanced Search+
WU Tao (吴涛), WANG Xinbing (王新兵), WANG Shaoyi (王少义). Spectral Efficiency Extreme Ultraviolet Emission from CO2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph[J]. Plasma Science and Technology, 2013, 15(5): 435-438. DOI: 10.1088/1009-0630/15/5/08
Citation: WU Tao (吴涛), WANG Xinbing (王新兵), WANG Shaoyi (王少义). Spectral Efficiency Extreme Ultraviolet Emission from CO2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph[J]. Plasma Science and Technology, 2013, 15(5): 435-438. DOI: 10.1088/1009-0630/15/5/08

Spectral Efficiency Extreme Ultraviolet Emission from CO2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph

Funds: supported by the Scientific Research Foundation of the Education Department of Hubei Province (No. Q20131512) and National Natural Science Foundation of China (No. 61078024)
More Information
  • Received Date: November 14, 2011
  • A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 nm for lithography. Spectral e±ciency of the EUV emission around 13.5 nm from plate, cavity, and thin foil tin targets was studied. By translating the focusing lens along the laser axis, the dependence of EUV spectra on the amount of defocus was investigated. The results showed that the spectral effiency was higher for the cavity target in comparison to the plate or foil target, while it decreased with an increase in the defocus distance. The source's spectra and the EUV emission intensity normalized to the incident pulse energy at 45o from target normal were characterized for the in-band (2% of bandwidth) region as a function of laser energy spanning from 46 mJ to 600 mJ for the pure tin plate target. The energy normalized EUV emission was found to increase with the increasing incident pulse energy. It reached the optimum value for the laser energy of around 343 mJ, after which it dropped rapidly.
  • Related Articles

    [1]Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783
    [2]Kai ZHAO (赵凯), Feng LI (李锋), Baigang SUN (孙佰刚), Hongyu YANG (杨宏宇), Tao ZHOU (周韬), Ruizhi SUN (孙睿智). Numerical and experimental investigation of plasma plume deflection with MHD flow control[J]. Plasma Science and Technology, 2018, 20(6): 65511-065511. DOI: 10.1088/2058-6272/aab2a4
    [3]Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb
    [4]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [5]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [6]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [7]YU Jianyang(俞建阳), LIU Huaping(刘华坪), XU Dimeng(徐迪孟), CHEN Fu(陈浮). Investigation of the DBD Plasma Effect on Flat Plate Flow[J]. Plasma Science and Technology, 2014, 16(3): 197-202. DOI: 10.1088/1009-0630/16/3/05
    [8]SUN Quan (孙权), CHENG Bangqin (程邦勤), LI Yinghong (李应红), CUI Wei (崔巍), et al.. Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction[J]. Plasma Science and Technology, 2013, 15(9): 908-914. DOI: 10.1088/1009-0630/15/9/15
    [9]WEN Xiaoqiong (温小琼), Wang Ming (王明), DING Zhenfeng (丁振峰), LIU Guishi (刘贵师). Decoloration of azo dye sunset yellow by a coaxial insulated-rod-to-cylinder underwater streamer discharge system[J]. Plasma Science and Technology, 2012, 14(4): 293-296. DOI: 10.1088/1009-0630/14/4/05
    [10]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.

Catalog

    Article views (303) PDF downloads (1649) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return