Advanced Search+
HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04
Citation: HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04

Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode

Funds: supported by Handan Science and Technology Research and Development Project of China (No. 1121120069-5) and the Scientific Research Start-up Funds of Doctor and Master of Handan College of China (No. 2010005), National Natural Science Foundation of China (Nos. 11335004 and 11375040), the Important National Science and Technology Specific Project of China (No. 2011ZX02403-001)
More Information
  • Received Date: April 08, 2012
  • A self-consistent two-dimensional (2D) collisionless fluid model is developed to sim- ulate the effects of the low-frequency (LF) power on a dual frequency (DF) capacitive sheath over an electrode with a cylindrical hole. In this paper, the time-averaged potential, electric field (E- field), ion density in the sheath, and ion energy distributions (IEDs) at the center of the cylindrical hole’s bottom are calculated and compared for different LF powers. The results show that the LF power is crucial for determining the sheath structure. As the LF power decreases, the potential drop decreases, the sheath becomes thinner, and the plasma molding effect seems to be more significant. The existence of a radial E-field near the sidewalls of a hole may cause a significant portion of ions to strike the sidewall and lead to the phenomenon of notching.
  • 1 Lieberman M A and Lichtenberg A J. 2005, Principles of Plasma Discharges and Material Processing. Wiley,New York;
    2 Christophe C, Peignon M C, Tessier P Y. 2000, Ap-plied Surface Science, 164: 72;
    3 Nishikawa K, Ootera H, Tomohisa S, et al. 2000, Thin Solid Films, 374: 190;
    4 Feldsien John, Kim D and Economou D J. 2000, Thin Solid Films, 374: 311;
    5 Liu Y X, Zhang Q Z, Jiang Wei, et al. 2011, Phys.Rev. Lett., 107: 055002;
    6 Kim C K and Economou D J. 2002, J. Appl. Phys.,91: 2594;
    7 Kim D and Economou D J. 2003, J. Appl. Phys., 94:2852;
    8 Kim D and Economou D J. 2003, J. Appl. Phys., 94:3740;
    9 Kim D, Economou D J, Woodworth J R, et al. 2003,IEEE Trans. Plasma Sci., 31: 691;
    10 Hass F A. 2004, J. Phys. D: Appl. Phys., 37: 3117;
    11 Georgieva V, Bogaerts A. 2005, J. Appl. Phys., 98:023308;
    12 Lee J K, Manuilenko O V, Babaeva N Y, et al. 2005,Plasma Sources Sci. Technol., 14: 89;
    13 Boyle P C, Robiche J, Turner M M. 2004, J. Phys. D:Appl. Phys., 37: 1451;
    14 Yen T F, Chang K J, Chiu K F. 2005, Microelectronic Engineering, 82: 129;
    15 Dai Z L, Hao M L, Wang Y N. 2010, Plasma Sci. Tech-nol., 12: 41;
    16 Kim D, Economou D J. 2002, IEEE Trans. Plasma Sci., 30: 2048;
    17 Edelberg E A, Aydil E S. 1999, J. Appl. Phys., 86:4799;
    18 Boris J P, Book D L. 1976, J. Comput. Phys., 20: 397;
    19 Zalesak S T. 1979, J. Comput. Phys., 31: 335;
    20 DiCarlo J V, Kushner M J. 1989, J. Appl. Phys., 66:5763;
    21 Hou L J, Wang Y N, Miskvic Z L. 2004, Plasma Sci.Technol., 6: 2404;
    22 Zhong Xiaolin. 1996, J. Comput. Phys., 128: 19;
    23 Hammond E P, Mahesh K, Moin P A J. 2002, Comput.Phys., 176: 402;
    24 Dai Z L, Xu X, Wang Y N. 2007, Phys. Plasmas, 14:013507;
    25 Ahn T H, Nakamura K, Sugai H. 1996, Plasma Sources Sci. Technol., 5: 139

Catalog

    Article views (206) PDF downloads (1134) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return