Advanced Search+
HUANG Zhongde(黄忠德), YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), QIU Aici(邱爱慈). Experimental Research of ZnO Surface Flashover Trigger Device of Pseudo-Spark Switch[J]. Plasma Science and Technology, 2014, 16(5): 506-511. DOI: 10.1088/1009-0630/16/5/11
Citation: HUANG Zhongde(黄忠德), YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), QIU Aici(邱爱慈). Experimental Research of ZnO Surface Flashover Trigger Device of Pseudo-Spark Switch[J]. Plasma Science and Technology, 2014, 16(5): 506-511. DOI: 10.1088/1009-0630/16/5/11

Experimental Research of ZnO Surface Flashover Trigger Device of Pseudo-Spark Switch

Funds: supported by National Natural Science Foundation of China (No. 51177131) and the New Century Talent Foundation of Ministry of Education of China (NCET-08-0438)
More Information
  • Received Date: January 02, 2012
  • Pseudo-spark switch (PSS) is one of the most widely used discharge switches for pulse power technology. It has many special characteristics such as reliability in a wide voltage range, small delay time, as well as small delay jitter. In this paper, the measuring method for the initial plasma of ZnO surface flashover triggering device of PSS is studied and the results of the measurement show that the electron emission charge is mainly influenced by trigger voltage, gas pressure and DC bias voltage. When the bias voltage increases from 2 kV to 6 kV with the gap distance fixed at 3 mm, the electron emission charge changes from 2 μC to about 6 μC. When the gap distance changes from 3 mm to 5 mm with the bias voltage fixed at 2 kV, the electron emission charge increases from 1.5 μC to 2.5 μC. When the gap distance is 4 mm, the hold-off voltage of PSS is 45 kV at gas pressure of 2 Pa, the minimum operating voltage is less than 1 kV. So, the operating scope is from 2.22% to 99% of its self-breakdown voltage. The discharging delay time decreases from 450 ns to 150 ns when the trigger pulse voltage is 1 kV and the discharging voltage is changed from 1 kV to 12 kV. When the trigger pulse voltage is 6 kV, the discharging delay time is less than 100 ns and changes from 100 ns to 50 ns, and the delay jitters are less than 30 ns.
  • 1.Frank K, Dewald E, Bickes C, et al. 1999, IEEE Trans. Plasma Sci., 27: 1008
    2. Tkotz R, Gortler A, Christiansen J, et al. 1979, IEEE Trans. Plasma Sci., 23: 309
    3. Green A J, Chritopoulos C. 1979, IEEE Trans. Plasma Sci., PS-7: 111
    4. Jan Stroh, Wemer Hartmann. 1995, IEEE Trans. Plasma Sci., 233: 335
    5. Tkotz R, Schlaug M, Christiansen J, G.ortler A. 1996, IEEE Trans. Plasma Sci., 24: 53
    6. Legentil M, Postel C, Puech V, Thomaz J C. 1995, IEEE Trans. Plasma Sci., 23: 330
    7. Miller H C. 1989, IEEE Trans. Electrical Insulation, 24: 765
    8. Gortler A, Christiansen J, Dotzer R. 1989, IEEE Trans. Plasma Sci., 17: 762
    9. Yao Xueling, Chen Jingliang, Zeng Zhengzhong. 2007, Plasma Science and Technology, 9: 496
    10. Anderson R A, Brainard J P. 1980, Appl. Phys., 51: 1414
  • Related Articles

    [1]Tianchi WANG (王天驰), Yingchao DU (杜应超), Wei CHEN (陈伟), Junna LI (李俊娜), Haiyang WANG (王海洋), Tao HUANG (黄涛), Linshen XIE (谢霖燊), Le CHENG (程乐), Ling SHI (石凌). A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23(11): 115508. DOI: 10.1088/2058-6272/ac2420
    [2]Yanqin LIU (刘彦琴), Guangning WU (吴广宁), Guoqiang GAO (高国强), Jianyi XUE (薛建议), Yongqiang KANG (康永强), Chaoqun SHI (石超群). Surface charge accumulation behavior and its influence on surface flashover performance of Al2O3-filled epoxy resin insulators under DC voltages[J]. Plasma Science and Technology, 2019, 21(5): 55501-055501. DOI: 10.1088/2058-6272/aafdf7
    [3]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [4]Saravanan ARUMUGAM, Prince ALEX, Suraj Kumar SINHA. Feedback model of secondary electron emission in DC gas discharge plasmas[J]. Plasma Science and Technology, 2018, 20(2): 25404-025404. DOI: 10.1088/2058-6272/aa8e3f
    [5]ihao TIE (铁维昊), Cui MENG (孟萃), Yuting ZHANG (张雨婷), Zirang YAN (闫自让), Qiaogen ZHANG (张乔根). Analysis on discharge process of a plasma-jet trigered gas spark switch[J]. Plasma Science and Technology, 2018, 20(1): 14009-014009. DOI: 10.1088/2058-6272/aa8cbe
    [6]NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
    [7]YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14
    [8]LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11
    [9]XU Ming, SHI Wei, JJIANG Zenggong, WANG Shaoqiang, FU Zhanglong. Experimental Research on Inhibition of Surface Flashover Based on High Power Gallium Arsenide Photoconductive Switches Triggered by Laser[J]. Plasma Science and Technology, 2011, 13(6): 672-675.
    [10]YAO Xueling, CHEN Jingliang, SUN Wei. Experimental Study on Triggering Characteristics of a Surface Flashover Triggered Vacuum Switch[J]. Plasma Science and Technology, 2010, 12(6): 734-737.

Catalog

    Article views (223) PDF downloads (1066) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return