Advanced Search+
NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
Citation: NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05

Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water

Funds: supported in part by National Natural Science Foundation of China (Nos. 11275040 and 51437002)
More Information
  • Received Date: July 30, 2015
  • The temporally and spatially resolved optical emission spectrum of Hα of a pulsed spark discharge in water was experimentally measured. The temporally and spatially resolved electron densities, along the radial direction of the spark filament, for a pulsed spark discharge in water with a conductivity of 100 µS/cm were investigated. The electron density in the spark filament was found to be in the 1018/cm3 order of magnitude. The highest electron density was measured at the primary stage of the spark filament, and it decreased with time. The radial distribution of electron density increased from the center to the edge of the spark filament.
  • 1 Sun B, Sato M, Clements J S. 1999, J. Phys. D: Appl. Phys., 32: 1908 2 Mariotti D, Sankaran R M. 2010, J. Phys. D: Appl. Phys., 43: 323001 3 Cha S I, Hong S H, Kim B K. 2003, Materials Science and Engineering: A, 351: 31 4 Descoeudres A, Hollenstein C, Demellayer R, et al. 2004, Journal of Materials Processing Technology, 149: 184 5 Danil D, Yohan S, Mikhail P M, et al. 2013, J. Phys. D: Appl. Phys., 46: 1 6 Bruggeman P, Leys C. 2009, J. Phys. D: Appl. Phys., 42: 053001 7 Marinov I, Guaitella O, Rousseau A, et al. 2013, J. Phys. D: Appl. Phys., 46: 464013 8 Lu X P, Pan Y, Liu K F, et al. 2002, J. Phys. D: Appl. Phys., 91: 24 9 ?Sunka P. 2001, Physics of Plasmas, 8: 2587 10 Konjevic N, Ivkovic M, Sakan N. 2012, Spectrochimi. Acta Part B, 76: 16 11 Descoeudres A, Hollenstein C, Walder G, et al. 2005, J. Phys. D: Appl. Phys., 38: 4066 12 Bragan?ca I M F, Rosa P A R, Dias F M, et al. 2013, Journal of Applied Physics, 113: 233301 13 Wen X Q, Liu G S, Ding Z F. 2011, IEEE Trans. Plasma Sci., 39: 1758 14 Alvarez R, Rodero A, Quintero M C, et al. 2002, Spectrochimi. Acta Part B, 57: 1665 15 Chan G C-Y, Hieftje G M, et al. 2006, Spectrochimi. Acta Part B, 61: 31 16 Wen X Q, Liu G S, Ding Z F. 2012, IEEE Trans. Plasma Sci., 40: 438 17 Bertrand E L, Izarra C. 2011, J. Phys. D: Appl. Phys., 44: 415201 18 Chan G C-Y, Hieftje G M, et al. 2005, Spectrochimi. Acta Part B, 60: 1486 19 Alvarez R, Quintero M C, Rodero A. 2004, Spectrochimi. Acta Part B, 59: 709 20 Descoeudres A, Hollenstein C, Walder G, et al. 2008, Plasma Sources Sci. Technol., 17: 024008 21 Namihira T, Sakai S, Yamaguchi T, et al. 2007, IEEE Trans. Plasma Sci., 35: 614 22 Simek M, ?Clupek M, Babicky V, et al. 2012, Plasma Sources Sci. Technol., 21: 055031 23 Griem H R. 1974, Spectral Line Broadening by Plasmas. Academic Press, New York 24 Bruggeman P, Degroote J, Vierendeels J, et al. 2008, Plasma Sources Sci. Technol., 17: 025008 25 Bruggeman P, Leys C, Vierendeels J. 2007, J. Phys. D: Appl. Phys., 40: 1937 26 Sommers B S, Foster J E, Babaeva N Y, et al. 2011, J. Phys. D: Appl. Phys., 44: 082001

Catalog

    Article views (379) PDF downloads (706) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return