Advanced Search+
CHEN Huixia(陈慧黠), XIU Zhilong(修志龙), BAI Fengwu(白凤武). Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma[J]. Plasma Science and Technology, 2014, 16(6): 602-607. DOI: 10.1088/1009-0630/16/6/12
Citation: CHEN Huixia(陈慧黠), XIU Zhilong(修志龙), BAI Fengwu(白凤武). Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma[J]. Plasma Science and Technology, 2014, 16(6): 602-607. DOI: 10.1088/1009-0630/16/6/12

Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

Funds: supported by National Natural Science Foundation of China (No. 20576018)
More Information
  • Received Date: March 24, 2013
  • Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)- linked xylose reductases and NAD + -linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.
  • 1.Farrell A E, Plevin R J, Turner B T, et al. 2006, Sci- ence, 311: 506.
    2.Bai.F.W,.Anderson.W.A,.Moo-Young.M. 2008,Biotechnol. Adv., 26: 89.
    3.Balat M, Balat H. 2009, Appl. Energ., 86: 2273.
    4.Makenete A, Lemmer W, Kupka J. 2008, Int. Food.Agribusiness Manage. Rev., 11: 101.
    5.Lynd L R, Cushman J H, Nichols R J, et al. 1991,Science, 251: 1318.
    6.Dodds D R, Gross R A. 2007, Science, 318: 1250.
    7.Jordan N, Boody G, Broussard W, et al. 2007, Science,316: 1570.
    8.Aristidou A, Penttil¨a M. 2000, Curr. Opin. Biotech.,11: 187.
    9.Lee W J, Ryu Y W, Seo J H. 2000, Process Biochem.,35: 1199.
    10.Bruinenberg P M, Bot H P M, Dijken J P, et al. 1984,Appl. Microbiol. Biot., 19: 256.
    11.Chu B C H, Lee H. 2007, Biotechnol. Adv., 25: 425.
    12.Gregory W C. 1955, Argon. J., 47: 396.
    13.Kayhart M. 1956, Radiat. Res., 4: 65.
    14.Predieri S, Magli M, Zimmerman R H. 1997, Euphyt-ica, 93: 227.
    15.Mazza C A, Battista D, Zima A M, et al. 1999, Plant.Cell Environ., 22: 61.
    16.Chen Y P, Yue M, Wang X L. 2005, Plant Sci., 168:601.
    17.Gu S B, Yao J M, Yuan Q P, et al. 2006, Appl. Micro-biol. Biot., 72: 456.
    18.Laroussi M, Richardsonand J P, Dobbs F C. 2002,Appl. Phys. Lett., 81: 772.
    19.Gaunt L F, Beggs C B, Georghiou G E. 2006, IEEE.Trans. Plasma Sci., 34: 1257.
    20.Yu H, Xiu Z L, Ren C S, et al. 2005, IEEE Trans.Plasma Sci., 33: 1405.
    21.Wang C H, Wu Y, Li G F. 2008, J. Electrostat., 66:71.
    22.Wang L Y, Huang Z L, Li G, et al. 2010, J. Appl.Microbiol., 108: 851.
    23.Dong X Y, Xiu Z L, Hou Y M, et al. 2009, IEEE Trans.Plasma Sci., 37: 920.
    24.Carratore R D, Croce C D, Simili M, et al. 2002, Mut.Res.-Gen. Tox. En., 513: 183.
    25.Ghaly A E, Ben-Hassan R M. 1993, Appl. Biochem.Biotech., 43: 77.
    26.Favre C, Aguilar P S, Carrillo M C. 2008, Free. Radi-cal. Bio. Med., 45: 1446.
    27.Verduyn C, Van Kleef R, Frank J, et al. 1985, Biochem.J., 226: 669.
    28.Neuhauser W, Haltrich D, Kulbe K D, et al. 1997,Biochem. J., 326: 683.
    29.Bradford M M. 1976, Anal. Biochem., 72: 248.
    30.Sun L H, Jiang B, Xiu Z L. 2009, Biotechnol. Lett.,31: 371.
    31.Miller G L. 1959, Anal. Chem., 31: 426.
    32.Moreau M, Orange N, Feuilloley M G J. 2008, Biotech-nol. Adv., 26: 610.
    33.Deng X, Shi J, Kong M G. 2006, IEEE Trans. Plasma.Sci., 34: 1310.
    34.Chen H X, Bai F W, Xiu Z L. 2010,.IEEE Trans.Plasma. Sci., 38: 1885.
    35.M.ller P, Wallin H. 1998, Mutat. Res.-Rev. Mutat.,410: 271.
    36.D′.az-Llera.S, Podlutsky A,.Osterholm.A.M,.et.al..2000, Mut. Res.-Gen. Tox. En., 469: 51.
    37.Ralser M, Wamelink M M, Kowald A, et al. 2007, J.Biol., 6: 10.
    38.Lebeau T, Jouenne T, Junter G A. 1997, Enzyme Mi-crob. Tech., 21: 265.
    39.Meinander N Q, Hahn-H¨agerdal B. 1997, Appl. Envi-ron. Microb., 63: 1959.
    40.Meinander.N.Q,.Boels.I,.Hahn-H¨agerdal.B. 1999,Bioresour. Technol., 68: 79.
    41.Grotkj.r T, Christakopoulos P, Nielsen J, et al. 2005,Metab. Eng., 7: 437.
    42.G′.rio F M, Peito M A, Amaral-Colla.co M T. 1989,Appl. Microbiol. Biot., 32: 199.
  • Related Articles

    [1]Tatiana HABIB, José Mauricio A. CAIUT, Bruno CAILLIER. Fast synthesis of gold nanoparticles by cold atmospheric pressure plasma jet in the presence of Au+ ions and a capping agent[J]. Plasma Science and Technology, 2024, 26(7): 075505. DOI: 10.1088/2058-6272/ad3499
    [2]Zhaoyuan LIU (刘钊源), Qiang CHEN (陈强), Qinghuo LIU (柳清伙), Kostya (Ken) OSTRIKOV (欧思聪). Visualization of gold nanoparticles formation in DC plasma-liquid systems[J]. Plasma Science and Technology, 2021, 23(7): 75504-075504. DOI: 10.1088/2058-6272/ac0008
    [3]Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada
    [4]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [5]Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27
    [6]Vukoman JOKANOVIC, Bozana COLOVIC, Anka TRAJKOVSKA PETKOSKA, Ana MRAKOVIC, Bojan JOKANOVIC, Milos NENADOVIC, Manuela FERRARA, Ilija NASOV. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 125504. DOI: 10.1088/2058-6272/aa8806
    [7]JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15
    [8]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [9]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [10]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09

Catalog

    Article views (206) PDF downloads (1313) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return