Advanced Search+
Zhaoyuan LIU (刘钊源), Qiang CHEN (陈强), Qinghuo LIU (柳清伙), Kostya (Ken) OSTRIKOV (欧思聪). Visualization of gold nanoparticles formation in DC plasma-liquid systems[J]. Plasma Science and Technology, 2021, 23(7): 75504-075504. DOI: 10.1088/2058-6272/ac0008
Citation: Zhaoyuan LIU (刘钊源), Qiang CHEN (陈强), Qinghuo LIU (柳清伙), Kostya (Ken) OSTRIKOV (欧思聪). Visualization of gold nanoparticles formation in DC plasma-liquid systems[J]. Plasma Science and Technology, 2021, 23(7): 75504-075504. DOI: 10.1088/2058-6272/ac0008

Visualization of gold nanoparticles formation in DC plasma-liquid systems

Funds: Q Chen thanks the Basic Research Program of Science and Technology of Shenzhen, China (No. JCYJ20190809162617137) and National Natural Science Foundation of China (No. 52077185) for partial financial support.
More Information
  • Received Date: January 25, 2021
  • Revised Date: May 10, 2021
  • Accepted Date: May 10, 2021
  • Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(III) trihydrate (HAuCl4 centerdot 3H2O) which is contained in an H-type electrochemical cell. The solution contained in one cell acts as a cathode, and in the other as an anode. Experiments are carried out to directly visualize the formation process of gold nanoparticles (AuNPs) in separated cells of the H-type electrochemical reactor. The results and analyzes suggest that hydrogen peroxide and hydrated electrons generated from the plasma-liquid interactions play the roles of reductants in the solutions, respectively. Hydrogen peroxide can be generated in the case of the liquid being a cathode or an anode, while most of hydrated electrons are formed in the case of the liquid being an anode. Therefore, the reduction of the AuCl4 ions is mostly attributed to the hydrogen peroxide as the liquid acts as a cathode, while to the hydrogen peroxide and hydrated electrons as the liquid acts as an anode. Moreover, the pH value of the solution can be used to tune the formation processes and the final form of the AuNPs due to its mediation of reductants.
  • [1]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [2]
    Gupta S K S 2015 Plasma Sources Sci. Technol. 24 063001
    [3]
    Hickling A and Ingram M D 1964 Trans. Faraday Soc. 60 783
    [4]
    Hickling A and Ingram M D 1964 J. Electroanal. Chem. 8 65
    [5]
    Denaro A R and Hickling A 1958 J. Electrochem. Soc. 105 265
    [6]
    Davies R A and Hickling A 1952 J. Chem. Soc. 3595–602
    [7]
    Foster J E 2017 Phys. Plasmas 24 055501
    [8]
    Yang D Z et al 2014 Plasma Process. Polym. 11 842
    [9]
    Liu Y J et al 2016 J. Hazard Mater. 308 84
    [10]
    Wang L and Jiang X Z 2008 Environ. Sci. Technol. 42 8492
    [11]
    Wang R X et al 2014 Plasma Process. Polym. 11 448
    [12]
    Saito G and Akiyama T 2015 J. Nanomater. 2015 123696
    [13]
    Liu J D et al 2016 Electrochim. Acta 222 1677
    [14]
    Kondeti V S S K et al 2017 J. Vac. Sci. Technol. A 35 061302
    [15]
    Gupta S K S 2017 Plasma Chem. Plasma Process. 37 897
    [16]
    Chen Q et al 2015 J. Phys. D: Appl. Phys. 48 424005
    [17]
    Brettholle M et al 2010 Phys. Chem. Chem. Phys. 12 1750
    [18]
    Höfft O and Endres F 2011 Phys. Chem. Chem. Phys. 13 13472
    [19]
    Richmonds C and Sankaran R M 2008 Appl. Phys. Lett. 93 131501
    [20]
    Huang X Z et al 2013 Nanotechnology 24 095604
    [21]
    Baba K et al 2010 Chem. Commun. 46 255
    [22]
    Kaneko T et al 2009 Plasma Process. Polym. 6 713
    [23]
    Shirafuji T et al 2013 Japan. J. Appl. Phys. 52 126202
    [24]
    Velusamy T et al 2017 Plasma Process. Polym. 14 1600224
    [25]
    Hatakeyama R 2017 Rev. Mod. Plasma Phys. 1 7
    [26]
    Gong X N et al 2018 J. Electrochem. Soc. 165 E540
    [27]
    Huang H et al 2020 Chem. Commun. 56 221
    [28]
    Mariotti D et al 2012 Plasma Process. Polym. 9 1074
    [29]
    Di L B et al 2016 Adv. Mater. Interfaces 3 1600760
    [30]
    Zhan Z B et al 2016 Plasma Sci. Technol. 18 494
    [31]
    Huang Y F et al 2016 IEEE Trans. Plasma Sci. 44 938
    [32]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [33]
    Kong M G et al 2009 New J. Phys. 11 115012
    [34]
    Puač N, Gherardi M and Shiratani M 2018 Plasma Process.Polym. 15 1700174
    [35]
    Misra N, Schlüter O and Cullen P J 2016 Cold Plasma in Food and Agriculture: Fundamentals and Applications (New York: Academic)
    [36]
    Chen Q et al 2012 Appl. Phys. Express 5 086201
    [37]
    Kaneko T et al 2011 Plasma Sources Sci. Technol. 20 034014
    [38]
    Rumbach P et al 2013 J. Am. Chem. Soc. 135 16264
    [39]
    Rumbach P, Bartels D M and Go D B 2018 Plasma Sources Sci. Technol. 27 115013
    [40]
    Richmonds C et al 2011 J. Am. Chem. Soc. 133 17582
    [41]
    Lin J et al 2020 Eur. Phys. J. D 74 80
    [42]
    Chen Q et al 2019 J. Phys. D: Appl. Phys. 52 425205
    [43]
    Tochikubo F et al 2014 Japan. J. Appl. Phys. 53 126201
    [44]
    Shirai N et al 2014 Japan. J. Appl. Phys. 53 046202
    [45]
    Nash T 1953 Biochem. J. 55 416
    [46]
    Ma Y et al 2018 J. Phys. D: Appl. Phys. 51 155205
    [47]
    Yu R et al 2021 Plasma Sci. Technol. 23 055504
    [48]
    Pacławski K and Sak T 2015 J. Min. Metall. B 51 133
    [49]
    LaMer V K and Dinegar R H 1950 J. Am. Chem. Soc. 72 4847
    [50]
    Harris D C 2010 Quantitative Chemical Analysis 8th edn (New York: W. H. Freeman and Company)
    [51]
    Schwarz H A 1981 J. Chem. Educ. 58 101
    [52]
    Bratsch S G 1989 J. Phys. Chem. Ref. Data 18 1
    [53]
    Haynes W M, Lide D R and Bruno T J 2012 CRC Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press)
    [54]
    Choi H C et al 2002 J. Am. Chem. Soc. 124 9058
    [55]
    He X et al 2018 Plasma Sources Sci. Technol. 27 085010
    [56]
    Chen Z et al 2018 J. Phys. D: Appl. Phys. 51 325201
    [57]
    Buxton G V et al 1988 J. Phys. Chem. Ref. Data 17 513
    [58]
    Sahni M and Locke B R 2006 Ind. Eng. Chem. Res. 45 5819
    [59]
    Park S E et al 2006 Bull. Korean Chem. Soc. 27 1341
    [60]
    Anderson M L et al 1999 Langmuir 15 674
  • Related Articles

    [1]Maoyang LI, Chaochao MO, Jiali CHEN, Peiyu JI, Haiyun TAN, Xiaoman ZHANG, Meili CUI, Lanjian ZHUGE, Xuemei WU, Tianyuan HUANG. Effects of power on ion behaviors in radio-frequency magnetron sputtering of indium tin oxide (ITO)[J]. Plasma Science and Technology, 2024, 26(7): 075506. DOI: 10.1088/2058-6272/ad3599
    [2]Weichen NI, Chao YE, Yiqing YU, Xiangying WANG. Effect of gas pressure on ion energy at substrate side of Ag target radio-frequency and very-high-frequency magnetron sputtering discharge[J]. Plasma Science and Technology, 2022, 24(2): 025506. DOI: 10.1088/2058-6272/ac3c3e
    [3]Minglei SHAN (单鸣雷), Bingyan CHEN (陈秉岩), Cheng YAO (姚澄), Qingbang HAN (韩庆邦), Changping ZHU (朱昌平), Yu YANG (杨雨). Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge[J]. Plasma Science and Technology, 2019, 21(7): 74002-074002. DOI: 10.1088/2058-6272/ab0b62
    [4]Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379
    [5]Peifang YANG (杨培芳), Chao YE (叶超), Xiangying WANG (王响英), Jiamin GUO (郭佳敏), Su ZHANG (张苏). Control of growth and structure of Ag films by the driving frequency of magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(8): 85504-085504. DOI: 10.1088/2058-6272/aa6619
    [6]Jiamin GUO (郭佳敏), Chao YE (叶超), Xiangying WANG (王响英), Peifang YANG (杨培芳), Su ZHANG (张苏). Growth and structural properties of silicon on Ag films prepared by 40.68 MHz veryhigh-frequency magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(7): 75502-075502. DOI: 10.1088/2058-6272/aa6395
    [7]LIU Yi (刘毅), YE Chao (叶超), HE Haijie (何海杰), WANG Xiangying (王响英). Effect of Frequency and Power of Bias Applied to Substrate on Plasma Property of Very-High-Frequency Magnetron Sputtering[J]. Plasma Science and Technology, 2015, 17(7): 583-588. DOI: 10.1088/1009-0630/17/7/10
    [8]WANG Qing (王庆), WANG Yongfu (王永富), BA Dechun (巴德纯), YUE Xiangji (岳向吉). The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process[J]. Plasma Science and Technology, 2012, 14(3): 235-239. DOI: 10.1088/1009-0630/14/3/09
    [9]MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671.
    [10]MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576.

Catalog

    Article views (128) PDF downloads (118) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return