Advanced Search+
Minglei SHAN (单鸣雷), Bingyan CHEN (陈秉岩), Cheng YAO (姚澄), Qingbang HAN (韩庆邦), Changping ZHU (朱昌平), Yu YANG (杨雨). Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge[J]. Plasma Science and Technology, 2019, 21(7): 74002-074002. DOI: 10.1088/2058-6272/ab0b62
Citation: Minglei SHAN (单鸣雷), Bingyan CHEN (陈秉岩), Cheng YAO (姚澄), Qingbang HAN (韩庆邦), Changping ZHU (朱昌平), Yu YANG (杨雨). Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge[J]. Plasma Science and Technology, 2019, 21(7): 74002-074002. DOI: 10.1088/2058-6272/ab0b62

Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge

Funds: This work is supported by National Natural Science Foundation of China (Grant Nos. 11874140, 11574072), NationalKey Research and Development Program of China (Grant No. 2016YFC0401600), Primary Research and Development Plan of Jiangsu Province, China (Grant No. BE2016056), Fundamental Research Funds for the Central Universities (Grant No. 2017B17814), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_0552).
More Information
  • Received Date: November 14, 2018
  • Underwater pulsed discharge is widely applied in medicine, machining, and material modification. The induced cavitation bubble and subsequent cavitation collapse are considered the major motivations behind these applications. This paper presents an underwater pulsed discharge system. The experimental setup is established to induce and investigate the cavitation bubble assisted with a high-speed camera. Three aspects, including the characteristic of the discharge with different applied voltages and conductivities, the evolution of the cavitation bubble profile, and the energy efficiency of cavitation bubble inducing, are investigated, respectively. Especially, the mechanism of pre-discharge time delay in the low field intensity case is explained using the Joule heat effect. The results show the validity of the underwater pulsed discharger and experimental setup. The present underwater pulsed discharger is proved to be a simple, portable, and easy-to-implement device for the investigation of cavitation bubble dynamics.
  • [1]
    Lu X et al 2016 Phys. Rep. 630 1
    [2]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [3]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [4]
    Chen B Y et al 2019 J. Hazard. Mater. 363 55
    [5]
    Chen B Y et al 2019 IEEE Trans. Plasma Sci. 47 837
    [6]
    Lauterborn W et al 2010 Rep. Prog. Phys. 73 106501
    [7]
    Wang H J et al 2017 Plasma Sci. Technol. 19 015504
    [8]
    Reuter F, Cairós C and Mettin R 2016 Ultrason. Sonochem. 33 170
    [9]
    Shan M L et al 2018 Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 232 445
    [10]
    Han B et al 2015 J. Fluid Mech. 771 706
    [11]
    Zhang Y N, Gao Y H and Du X Z 2018 Ultrason. Sonochem. 40 808
    [12]
    Ma X J et al 2018 Ultrason. Sonochem. 43 80
    [13]
    Zhu Y P et al 2018 Appl. Sci. 8 940
    [14]
    Huang Y F et al 2015 Appl. Phys. Lett. 107 184104
    [15]
    Zhao J J and You Z 2018 Cytom., Part A 93 222
    [16]
    Fan A L et al 2018 High Voltage Eng. 44 890 (in Chinese)
    [17]
    Li G Y et al 2017 J. Acoust. Soc. Am. 142 3147
    [18]
    Golovashchenko S F et al 2013 J. Mater. Process. Technol. 213 1191
    [19]
    Ahmed M W et al 2017 Plasma Phys. Rep. 43 381
    [20]
    Lu X 2007 J. Appl. Phys. 102 063302
    [21]
    Pei Y et al 2017 Plasma Sci. Technol. 19 095401
    [22]
    Liu F, Huang G and Ganguly B 2010 Plasma Sources Sci. Technol. 19 045017
    [23]
    Zhang L C et al 2017 Appl. Phys. Lett. 110 034101
    [24]
    Tie W H et al 2018 Plasma Sci. Technol. 20 014009
    [25]
    Brujan E A 2017 J. Phys. D: Appl. Phys. 50 215302
    [26]
    Ihara S et al 2018 J. Electrostat. 93 110
    [27]
    ?unka P 2001 Phys. Plasmas 8 2587
    [28]
    Yordanov V et al 2004 Vacuum 76 365
    [29]
    Wang Y B et al 2012 Chin. Phys. B 21 055203
    [30]
    Shervani-Tabar M T 2013 Ultrasonics 53 943
    [31]
    Cao Y et al 2018 Plasma Sci. Technol. 20 103001
    [32]
    Han R Y et al 2017 Phys. Plasmas 24 093506
    [33]
    Vogel A et al 1999 Appl. Phys. B 68 271
    [34]
    Aitken F, Mccluskey F M J and Denat A 1996 J. Fluid Mech. 327 373 7
  • Related Articles

    [1]Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379
    [2]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [3]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [4]DUAN Jianjin (段剑金), HU Jue (胡觉), ZHANG Chao (张超), WEN Yuanbin (温元斌), MENG Yuedong (孟月东), ZHANG Chengxu (张呈旭). Plasma Discharge Process in a Pulsed Diaphragm Discharge System[J]. Plasma Science and Technology, 2014, 16(12): 1106-1110. DOI: 10.1088/1009-0630/16/12/05
    [5]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [6]LU Na(鲁娜), FENG Yingchun(冯迎春), LI Jie(李杰), SU Yan(宿艳), SHANG Kefeng(商克峰), WU Yan(吴彦). Electrical Characteristics of Pulsed Corona Discharge Plasmas in Chitosan Solution[J]. Plasma Science and Technology, 2014, 16(2): 128-133. DOI: 10.1088/1009-0630/16/2/08
    [7]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [8]ZHU Linan (朱丽楠), WANG Yongjun (王永军), REN Zhijun (任芝军), LIU Guifang (刘桂芳), et al.. The Degradation of Organic Pollutants by Bubble Discharge in Water[J]. Plasma Science and Technology, 2013, 15(10): 1053-1058. DOI: 10.1088/1009-0630/15/10/17
    [9]CAO Hongrui (曹宏睿), LI Shiping (李世平), XU Xiufeng (徐修峰), Yuan Guoliang (袁国梁), YANG Qingwei(杨青巍), YIN Zejie (阴泽杰). A High-Speed Baseline Restorer for Neutron Flux Detection in ITER[J]. Plasma Science and Technology, 2012, 14(11): 1008-1010. DOI: 10.1088/1009-0630/14/11/09
    [10]MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671.
  • Cited by

    Periodical cited type(25)

    1. Shao, K., Song, M., Zhang, X. et al. Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front. Langmuir, 2024, 40(47): 25334-25343. DOI:10.1021/acs.langmuir.4c03815
    2. Chen, B., Liu, Q., Li, X. et al. Synthesis of NO by rotating sliding arc discharge reactor with conical-spiral electrodes. Plasma Science and Technology, 2024, 26(9): 094010. DOI:10.1088/2058-6272/ad6815
    3. Shan, M., Zha, Y., Yang, Y. et al. Morphological characteristics and cleaning effects of collapsing cavitation bubble in fractal cracks. Physics of Fluids, 2024, 36(6): 063337. DOI:10.1063/5.0215048
    4. Shao, K., Song, M., Zhang, X. et al. A review of micro-scale trapped air bubble growth distribution characteristics and thermal mechanical effects in ice | [冰中微尺度受陷气泡生长分布特性与宏观热力影响综述]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56(6): 152-174. DOI:10.11918/202311080
    5. Li, J., Liu, K., Zhang, L. et al. On electro-acoustic characteristics of a marine broadband sparker for seismic exploration. Journal of Oceanology and Limnology, 2024, 42(3): 760-771. DOI:10.1007/s00343-023-3131-4
    6. Gao, C., Kang, Z., Gong, D. et al. Novel method for identifying the stages of discharge underwater based on impedance change characteristic. Plasma Science and Technology, 2024, 26(4): 045503. DOI:10.1088/2058-6272/ad0d56
    7. Zhang, G., Zhang, H.T., Wu, Z.Y. et al. Experimental studies of cavitation evolution through a butterfly valve at different regulation conditions. Experiments in Fluids, 2024, 65(1): 4. DOI:10.1007/s00348-023-03743-3
    8. Cruz, S., Godínez, F.A., Martínez-Alvarado, L.E. et al. Bio-inspired apparatus to produce luminescent cavitation in a rigid walled chamber. PLoS ONE, 2023, 18(12 December): e0293839. DOI:10.1371/journal.pone.0293839
    9. Han, R., Chen, J., Guo, T. A Modified Phase-Transition Model for Multi-Oscillations of Spark-Generated Bubbles. Inventions, 2023, 8(5): 131. DOI:10.3390/inventions8050131
    10. Yang, Y., Shan, M., Kan, X. et al. Thermodynamic effects of gas adiabatic index on cavitation bubble collapse. Heliyon, 2023, 9(10): e20532. DOI:10.1016/j.heliyon.2023.e20532
    11. Phukan, A., Kharphanbuh, S.M., Nath, A. An empirical experimental investigation on the effect of an external electric field on the behaviour of laser-induced cavitation bubbles. Physical Chemistry Chemical Physics, 2022, 25(3): 2477-2485. DOI:10.1039/d2cp05561a
    12. Zhang, L.C., Ding, S.D., Pei, Y.L. et al. Experimental study of multi-bubble hydraulic efficiency of spark-generated bubbles. AIP Advances, 2022, 12(9): 095215. DOI:10.1063/5.0100591
    13. Li, C., Nie, B., Zhang, Z. et al. Experimental Study of the Structural Damage to Coal Treated by a High-Voltage Electric Pulse Discharge in Water. Energy and Fuels, 2022, 36(12): 6280-6291. DOI:10.1021/acs.energyfuels.2c01199
    14. Yang, Y., Shan, M., Su, N. et al. Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method. International Communications in Heat and Mass Transfer, 2022. DOI:10.1016/j.icheatmasstransfer.2022.105988
    15. Shan, M., Yang, Y., Kan, X. et al. Numerical Investigations on Temperature Distribution and Evolution of Cavitation Bubble Collapsed Near Solid Wall. Frontiers in Energy Research, 2022. DOI:10.3389/fenrg.2022.853478
    16. Chen, K., Wan, L., Chen, B. et al. Characteristics of water volatilization and oxides generation by using positive and negative corona. Plasma Science and Technology, 2022, 24(4): 044007. DOI:10.1088/2058-6272/ac567c
    17. Yan, C., Xu, Y., Zhang, P. et al. Investigation of the gas bubble dynamics induced by an electric arc in insulation oil. Plasma Science and Technology, 2022, 24(4): 044003. DOI:10.1088/2058-6272/ac5af9
    18. Liu, Z., Guan, X., Zhang, Y. et al. Experimental Study on the Dynamics of Multiple Bubbles in the Same Phase of Underwater Discharge | [水下放电同相位多气泡动力学实验研究]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(9): 3337-3345. DOI:10.13336/j.1003-6520.hve.20201146
    19. Dai, H., Li, L., Ren, S. et al. Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch. Plasma Science and Technology, 2021, 23(6): 064009. DOI:10.1088/2058-6272/abf126
    20. Akhter, M., Mallams, J., Tang, X. et al. Underwater plasma breakdown characteristics with respect to highly pressurized drilling applications. Journal of Applied Physics, 2021, 129(18): 183309. DOI:10.1063/5.0044410
    21. Liu, F., Zhuang, Y., Chu, H. et al. The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry. Plasma Science and Technology, 2021, 23(6): 064002. DOI:10.1088/2058-6272/abe3e1
    22. Jiao, Z., Zhao, J., Han, Y. et al. Dynamics of spark cavitation bubbles in a microchamber. Microfluidics and Nanofluidics, 2021, 25(2): 19. DOI:10.1007/s10404-021-02422-1
    23. Čech, J., Sťahel, P., Ráheľ, J. et al. Mass production of plasma activated water: Case studies of its biocidal effect on algae and cyanobacteria. Water (Switzerland), 2020, 12(11): 1-18. DOI:10.3390/w12113167
    24. Yang, Z., Cao, H., Hao, J. et al. Post-breakdown dielectric recovery characteristics of water for high-repetition-rate switch. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 909-914. DOI:10.1109/TDEI.2020.008507
    25. Yang, Y., Shan, M., Kan, X. et al. Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM. Ultrasonics Sonochemistry, 2020. DOI:10.1016/j.ultsonch.2019.104873

    Other cited types(0)

Catalog

    Article views (251) PDF downloads (509) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return