Citation: | Maoyang LI, Chaochao MO, Jiali CHEN, Peiyu JI, Haiyun TAN, Xiaoman ZHANG, Meili CUI, Lanjian ZHUGE, Xuemei WU, Tianyuan HUANG. Effects of power on ion behaviors in radio-frequency magnetron sputtering of indium tin oxide (ITO)[J]. Plasma Science and Technology, 2024, 26(7): 075506. DOI: 10.1088/2058-6272/ad3599 |
This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide (ITO) target. The positive ion energies exhibit an upward trajectory with increasing RF power, attributed to heightened plasma potential and initial emergent energy. Simultaneously, the positive ion flux escalates owing to amplified sputtering rates and electron density. Conversely, negative ions exhibit broad ion energy distribution functions (IEDFs) characterized by multiple peaks. These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential, alongside ion transport time. This elucidation finds validation in a one-dimensional model encompassing the initial ion energy. At higher RF power, negative ions surpassing 100 eV escalate in both flux and energy, posing a potential risk of sputtering damages to ITO layers.
The authors thank financial supports by National Natural Science Foundation of China (Nos. 11975163 and 12175160), Nantong Basic Science Research - General Program (No. JC22022034) and Natural Science Research Fund of Jiangsu College of Engineering and Technology (No. GYKY/2023/2). Also thank Suzhou Maxwell Technologies Co. Ltd. for partial hardware and particle financial support to carry out the research.
[1] |
Betz U et al 2006 Surf. Coat. Technol. 200 5751 doi: 10.1016/j.surfcoat.2005.08.144
|
[2] |
Chavan G T et al 2023 Nanomaterials 13 1226 doi: 10.3390/nano13071226
|
[3] |
Khan Z H and Harkin-Jones E 2016 Cogent Eng. 3 1170097 doi: 10.1080/23311916.2016.1170097
|
[4] |
Datta R S et al 2020 Nat. Electron. 3 51 doi: 10.1038/s41928-019-0353-8
|
[5] |
Yang C H et al 2008 Thin Solid Films 516 1984 doi: 10.1016/j.tsf.2007.05.093
|
[6] |
Sato Y et al 2008 Thin Solid Films 516 4598 doi: 10.1016/j.tsf.2007.05.091
|
[7] |
Gaskell J M and Sheel D W 2012 Thin Solid Films 520 4110 doi: 10.1016/j.tsf.2011.04.191
|
[8] |
George J and Menon C S 2000 Surf. Coat. Technol. 132 45 doi: 10.1016/S0257-8972(00)00726-X
|
[9] |
Salami H et al 2019 J. Vac. Sci. Technol. A 37 010905 doi: 10.1116/1.5058171
|
[10] |
Linss V et al 2019 AIP Conf. Proc. 2147 040009
|
[11] |
Le A H T et al 2019 Sol. Energy Mater. Sol. Cells 192 36 doi: 10.1016/j.solmat.2018.12.001
|
[12] |
Lei H et al 2010 Thin Solid Films 518 2926 doi: 10.1016/j.tsf.2009.08.059
|
[13] |
Welzel T and Ellmer K 2012 J. Vac. Sci. Technol. A 30 061306 doi: 10.1116/1.4762815
|
[14] |
Ellmer K and Welzel T 2012 J. Mater. Res. 27 765 doi: 10.1557/jmr.2011.428
|
[15] |
Caudevilla D et al 2022 Mater. Sci. Semicond. Process 137 106189 doi: 10.1016/j.mssp.2021.106189
|
[16] |
Petroski K A and Sagás J C 2020 Vacuum 182 109703 doi: 10.1016/j.vacuum.2020.109703
|
[17] |
Kurdesau F et al 2006 J. Non-Cryst. Solids 352 1466 doi: 10.1016/j.jnoncrysol.2005.11.088
|
[18] |
Bogaerts A and Gijbels R 2000 J. Anal. At. Spectrom. 15 1191 doi: 10.1039/b000519n
|
[19] |
Welzel T and Ellmer K 2013 J. Phys. D: Appl. Phys. 46 315202 doi: 10.1088/0022-3727/46/31/315202
|
[20] |
Toyoda H et al 2009 Appl. Phys. Express 2 126001 doi: 10.1143/APEX.2.126001
|
[21] |
Chen F F Lecture notes on Langmuir probe diagnostics In: Proceedings of the Mini-Course on Plasma Diagnostics, IEEE-ICOPS Meeting Jeju, Korea 2003
|
[22] |
Coburn J W and Kay E 1972 J. Appl. Phys. 43 4965 doi: 10.1063/1.1661054
|
[23] |
Woller K B, Whyte D G and Wright G M 2017 Phys. Plasmas 24 053513 doi: 10.1063/1.4983315
|
[24] |
Godyak V A 1986 Soviet Radio Frequency Discharge Research (Falls Church: Delphic Associates
|
[25] |
Economou D J 2013 J. Vac. Sci. Technol. A 31 050823 doi: 10.1116/1.4819315
|
[26] |
Hippler R, Cada M and Hubick Z 2022 Eur. Phys. J. D 76 214 doi: 10.1140/epjd/s10053-022-00539-8
|
[27] |
Winters H F 1976 Adv. Chem. 158 1
|
[1] | You HE, Yeong-Min LIM, Jun-Ho LEE, Ju-Ho KIM, Moo-Young LEE, Chin-Wook CHUNG. Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma[J]. Plasma Science and Technology, 2023, 25(4): 045401. DOI: 10.1088/2058-6272/ac9b9f |
[2] | Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd |
[3] | Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0 |
[4] | JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08 |
[5] | LIU Yi (刘毅), YE Chao (叶超), HE Haijie (何海杰), WANG Xiangying (王响英). Effect of Frequency and Power of Bias Applied to Substrate on Plasma Property of Very-High-Frequency Magnetron Sputtering[J]. Plasma Science and Technology, 2015, 17(7): 583-588. DOI: 10.1088/1009-0630/17/7/10 |
[6] | GAO Huanzhong (高欢忠), HE Long (何龙), HE Zhijiang (何志江), LI Zebin (李泽斌), et al.. Work Function Enhancement of Indium Tin Oxide via Oxygen Plasma Immersion Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 791-793. DOI: 10.1088/1009-0630/15/8/14 |
[7] | Umm-i-KALSOOM, R. AHMAD, Nisar ALI, I. A. KHAN, Sehrish SALEEM, Uzma IKHLAQ, et al. Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2013, 15(7): 666-672. DOI: 10.1088/1009-0630/15/7/12 |
[8] | LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05 |
[9] | PANG Jianhua (庞见华), LU Wenqi (陆文琪), XIN Yu (辛煜), WANG Hanghang (王行行), HE Jia (贺佳), XU Jun (徐军). Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films[J]. Plasma Science and Technology, 2012, 14(2): 172-176. DOI: 10.1088/1009-0630/14/2/17 |
[10] | RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555. |
1. | Wang, L., Zhao, H., Han, Z. et al. Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface. Journal of Applied Physics, 2024, 136(11): 113302. DOI:10.1063/5.0232639 | |
2. | Yang, C., Geng, Y., Wang, J. EFFECT OF AIR IMPURITIES ON THE CHARACTERISTICS OF HELIUM DISCHARGE AT HIGH TEMPERATURE AND HIGH PRESSURE. 2024. DOI:10.1115/ICONE31-135193 | |
3. | Fang, Z., Pan, Y.-Q., Dai, D. et al. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation | [基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(14): 145201. DOI:10.7498/aps.73.20240343 | |
4. | Yang, D., Chen, J., Duan, Z. et al. Simulation analysis on microscopic discharge characteristics of the bipolar corona of a floating conductor. Plasma Science and Technology, 2023, 25(8): 085402. DOI:10.1088/2058-6272/acc16e | |
5. | Liu, K., Fang, Z., Dai, D. Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage | [正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(13): 135201. DOI:10.7498/aps.72.20230385 | |
6. | Ning, W., Li, R., Shen, X. et al. Simulation of the Discharges in Millimetre Gap Driven by Radio-frequency and Kilohertz AC Voltages | [射 频 和 千 赫 兹 驱 动 的 毫 米 间 隙 放 电 的 仿 真 研 究]. Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2023, 55(4): 38-46. DOI:10.15961/j.jsuese.202200996 | |
7. | Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7 | |
8. | Yang, C., Geng, Y., Wang, J. Influence of nitrogen impurities on the characteristics of helium discharge at high pressure. Annals of Nuclear Energy, 2022. DOI:10.1016/j.anucene.2022.109024 | |
9. | Liu, F., Zhuang, Y., Zhao, Y. et al. Effects of O2addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies. Plasma Science and Technology, 2022, 24(5): 054004. DOI:10.1088/2058-6272/ac41c1 | |
10. | Wang, S., Song, P., Pei, H. et al. Numerical Simulation and Experimental Study of Ar/CH4 Coaxial DBD Discharge Characteristics. Advances in Transdisciplinary Engineering, 2022. DOI:10.3233/ATDE220025 | |
11. | Luo, B., Wang, J., Dai, D. et al. Partial discharge simulation of air gap defects in oil-paper insulation paperboard of converter transformer under different ratios of ac–dc combined voltage. Energies, 2021, 14(21): 6995. DOI:10.3390/en14216995 | |
12. | Zhao, L., Ji, Y., Shang, H. et al. Propagation Mechanism of a Positive DC Driven Atmospheric Pressure Helium Plasma Jet: Influences of He-air Mixing Layer | [正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(17): 6090-6099. DOI:10.13334/j.0258-8013.pcsee.202583 | |
13. | Yang, C.-P., Geng, Y.-N., Wang, J. et al. Breakdown voltage of high pressure helium parallel plates and effect of field emission | [高气压氦气平行极板击穿电压及场致发射的影响]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(13): 135102. DOI:10.7498/aps.70.20210086 | |
14. | Wang, Q., Zhou, X., Dai, D. et al. Nonlinear feature in the spatial uniformity of an atmospheric helium dielectric barrier discharge with the inter-dielectric gap width enlarged. Plasma Sources Science and Technology, 2021, 30(5): 05LT01. DOI:10.1088/1361-6595/abf75e | |
15. | Wang, Q., Dai, D., Ning, W. et al. Atmospheric dielectric barrier discharge containing helium-air mixtures: The effect of dry air impurities on the spatial discharge behavior. Journal of Physics D: Applied Physics, 2021, 54(11): 115203. DOI:10.1088/1361-6463/abcdd1 | |
16. | LIU, Y., WANG, S., ZHOU, R. et al. Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics. Plasma Science and Technology, 2021, 23(6): 064008. DOI:10.1088/2058-6272/abed2e | |
17. | Huang, Z., Zhang, Y., Dai, D. et al. Controlling the number of discharge current pulses in an atmospheric dielectric barrier discharge by voltage waveform tailoring. AIP Advances, 2021, 11(1): 015203. DOI:10.1063/5.0033571 | |
18. | Wang, Q., Ning, W., Dai, D. et al. How does the moderate wavy surface affect the discharge behavior in an atmospheric helium dielectric barrier discharge model?. Plasma Processes and Polymers, 2020, 17(2): 1900182. DOI:10.1002/ppap.201900182 | |
19. | Luo, L., Huang, Z., Wang, Q. et al. Influence of oxygen on the multiple-current-pulse behavior in an atmospheric homogeneous helium dielectric barrier discharge with air impurities. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.2964653 | |
20. | Liu, F., Guo, X., Zhou, Z. et al. Numerical simulations of the effects of the level of nitrogen impurities in atmospheric helium Townsend discharge. Physics of Plasmas, 2019, 26(12): 123502. DOI:10.1063/1.5125294 |