Advanced Search+
Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
Citation: Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd

Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering

Funds: The work was supported by National Natural Science Foundation of China (Nos. 11675118 and 11275136).
More Information
  • Received Date: June 10, 2018
  • The effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron discharge was investigated. The ion velocity distribution function (IVDF), the maximum ion energy and ion flux density were measured at the substrate by a retarding field energy analyzer. The sputtering behavior was investigated by the electric characteristics of target and bias discharges using voltage–current probe technique. It was found that the substrate bias led to the decrease of sputtering power, voltage and current with the amplitude <7.5%. The substrate bias also led to the broadening of IVDFs and the increase of ion flux density, made the energy divergent of ions impacting the substrate. This effect was further enhanced by increasing bias power and reducing discharge pressure.
  • [1]
    Br?auer G et al 2010 Vacuum 84 1354
    [2]
    Kelly P J and Arnell R D 2000 Vacuum 56 159
    [3]
    Zhang G G et al 2008 Surf. Coat. Technol. 202 2684
    [4]
    Nakao S et al 2013 IEEE Trans. Plasma Sci. 41 1819
    [5]
    Azhan N H et al 2015 J. Appl. Phys. 117 185307
    [6]
    Priyadarshini B G et al 2013 Surf. Eng. 29 689
    [7]
    Prathyusha T et al 2016 Optik 127 9457
    [8]
    Saoula N et al 2016 Thin Solid Films 616 521
    [9]
    Lv Y H et al 2012 Appl. Surf. Sci. 258 3864
    [10]
    Wang P F et al 2014 Mater. Chem. Phys. 145 434
    [11]
    Chen X et al 2016 J. Alloys Compd. 665 210
    [12]
    Kumar M and Mitra R 2014 Surf. Coat. Technol. 251 239
    [13]
    Karwal S et al 2018 J. Mater. Chem. C 6 3917
    [14]
    Rosenblum M P, Thompson M J and Street R A 1981 AIP Conf. Proc. 73 42
    [15]
    Lee H Y et al 2005 Surf. Coat. Technol. 193 152
    [16]
    Shi J, Kojima D and Hashimoto M 2000 J. Appl. Phys. 88 1679
    [17]
    Abdallah B et al 2007 Thin Solid Films 515 7105
    [18]
    Shaginyan L R et al 1999 Surf. Coat. Technol. 116-119 65
    [19]
    Bedra L et al 2010 J. Phys. D: Appl. Phys. 43 065202
    [20]
    Prenzel M et al 2013 J. Appl. Phys. 114 113301
    [21]
    Jeong Y D et al 2017 Curr. Appl. Phys. 17 403
    [22]
    Liu Y et al 2015 Thin Solid Films 579 1
    [23]
    Liu Y et al 2015 Plasma Sci. Technol. 17 583
    [24]
    He H J et al 2014 ECS J. Solid State Sci. Technol. 3 Q74
    [25]
    Yang P F et al 2017 Plasma Sci. Technol. 19 085504
    [26]
    Ellmer K, Wendt R and Wiesemann K 2003 Int. J. Mass Spectrom. 223-224 679
    [27]
    Seeger S, Harbauer K and Ellmer K 2009 J. Appl. Phys. 105 053305
    [28]
    Stranak V et al 2012 Surf. Coat. Technol. 206 2801
    [29]
    Stranak V et al 2011 Eur. Phys. J D 64 427
    [30]
    Godyak V A, Piejak R B and Alexandrovich B M 1991 IEEE Trans. Plasma Sci. 19 660
    [31]
    Tadjine R, Alim M M and Kechouane M 2017 Surf. Coat. Technol. 309 573
    [32]
    Depla D, Mahieu S and De Gryse R 2009 Thin Solid Films 517 2825
    [33]
    Georgieva V, Bogaerts A and Gijbels R 2004 Phys. Rev. E 69 026406
    [34]
    Baby A et al 2011 Plasma Sources Sci. Technol. 20 015004
    [35]
    O’Connell D et al 2007 Phys. Plasmas 14 103510
  • Related Articles

    [1]Maoyang LI, Chaochao MO, Jiali CHEN, Peiyu JI, Haiyun TAN, Xiaoman ZHANG, Meili CUI, Lanjian ZHUGE, Xuemei WU, Tianyuan HUANG. Effects of power on ion behaviors in radio-frequency magnetron sputtering of indium tin oxide (ITO)[J]. Plasma Science and Technology, 2024, 26(7): 075506. DOI: 10.1088/2058-6272/ad3599
    [2]Weichen NI, Chao YE, Yiqing YU, Xiangying WANG. Effect of gas pressure on ion energy at substrate side of Ag target radio-frequency and very-high-frequency magnetron sputtering discharge[J]. Plasma Science and Technology, 2022, 24(2): 025506. DOI: 10.1088/2058-6272/ac3c3e
    [3]Minglei SHAN (单鸣雷), Bingyan CHEN (陈秉岩), Cheng YAO (姚澄), Qingbang HAN (韩庆邦), Changping ZHU (朱昌平), Yu YANG (杨雨). Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge[J]. Plasma Science and Technology, 2019, 21(7): 74002-074002. DOI: 10.1088/2058-6272/ab0b62
    [4]Amin JIANG (蒋阿敏), Chao YE (叶超), Xiangying WANG (王响英), Min ZHU (朱敏), Su ZHANG (张苏). Ion property and electrical characteristics of 60 MHz very-high-frequency magnetron discharge at low pressure[J]. Plasma Science and Technology, 2018, 20(10): 105401. DOI: 10.1088/2058-6272/aad379
    [5]Peifang YANG (杨培芳), Chao YE (叶超), Xiangying WANG (王响英), Jiamin GUO (郭佳敏), Su ZHANG (张苏). Control of growth and structure of Ag films by the driving frequency of magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(8): 85504-085504. DOI: 10.1088/2058-6272/aa6619
    [6]Jiamin GUO (郭佳敏), Chao YE (叶超), Xiangying WANG (王响英), Peifang YANG (杨培芳), Su ZHANG (张苏). Growth and structural properties of silicon on Ag films prepared by 40.68 MHz veryhigh-frequency magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(7): 75502-075502. DOI: 10.1088/2058-6272/aa6395
    [7]LIU Yi (刘毅), YE Chao (叶超), HE Haijie (何海杰), WANG Xiangying (王响英). Effect of Frequency and Power of Bias Applied to Substrate on Plasma Property of Very-High-Frequency Magnetron Sputtering[J]. Plasma Science and Technology, 2015, 17(7): 583-588. DOI: 10.1088/1009-0630/17/7/10
    [8]WANG Qing (王庆), WANG Yongfu (王永富), BA Dechun (巴德纯), YUE Xiangji (岳向吉). The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process[J]. Plasma Science and Technology, 2012, 14(3): 235-239. DOI: 10.1088/1009-0630/14/3/09
    [9]MU Zongxin, LIU Shengguang, ZANG Hairong, WANG Chun, MU Xiaodong. Discharge Properties of High-Power Pulsed Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2011, 13(6): 667-671.
    [10]MU Zongxin (牟宗信), WANG Chun (王春), MU Xiaodong (牟晓东), JIA Li (贾莉), LIU Shengguang (刘升光), DONG Chuang(董闯). Experimental Study of the Effect of Applied Magnetic Field on Plasma Properties of Unbalanced Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 571-576.
  • Cited by

    Periodical cited type(3)

    1. Li, J., Wen, G., He, W. et al. Investigation of the effect of electrodeposited Cu from graphite wrapped in polypyrrole film formed by chemical oxidation. Materials Today Communications, 2024. DOI:10.1016/j.mtcomm.2024.110322
    2. Zhang, Z., Yang, Q., Wu, S. et al. Thickness Effect of TiO2 Film Deposited on a Blade-Plate Electrode Surface on Breakdown Characteristics of Propylene Carbonate. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(3): 915-923. DOI:10.1109/TDEI.2021.009565
    3. Wu, M., Ye, C., Liu, X. Influence of 27.12 MHz Bias on Properties of Magnetron Sputtering Ion Beam: A Methodological Study | [27.12 MHz基片偏压在调控磁控溅射离子能量中的作用研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2020, 40(4): 373-380. DOI:10.13922/j.cnki.cjovst.2020.04.16

    Other cited types(0)

Catalog

    Article views (164) PDF downloads (255) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return