Advanced Search+
Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0
Citation: Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0

Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

Funds: This work was financially supported by National Natural Science Foundation of China (No. 11374299).
More Information
  • Received Date: September 17, 2016
  • He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (∼17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.
  • [1]
    Zinkle S J and Ghoniem N M 2000 Fusion Eng. Des. 51–52 55
    [2]
    Lee E H and Mansur L K 2000 J. Nucl. Mater. 278 11
    [3]
    Azevedo C R F 2011 Engin. Fail. Anal. 18 1921
    [4]
    Gaganidze E and Aktaa J 2013 Fusion Eng. Des. 88 118
    [5]
    Zinkle S J, Maziasz P J and Stoller R E 1993 J. Nucl. Mater. 206 266
    [6]
    Ghoniem M and Takata M L 1982 J. Nucl. Mater. 105 276
    [7]
    Gilbert M R et al 2013 J. Nucl. Mater. 442 S755
    [8]
    Peng L et al 2011 Fusion Eng. Des. 86 2624
  • Related Articles

    [1]Lishan TIAN (田丽山), Weimin BAO (包为民), Yanming LIU (刘彦明), Chao SUN (孙超), Chengwei ZHAO (赵成伟). Probe method to measure the electromagnetic field in a plasma by Poynting vector conversion[J]. Plasma Science and Technology, 2021, 23(12): 125402. DOI: 10.1088/2058-6272/ac264c
    [2]Zhenghao REN (任政豪), Jinyuan LIU (刘金远), Feng WANG (王丰), Huishan CAI (蔡辉山), Zhengxiong WANG (王正汹), Wei SHEN (申伟). Influence of toroidal rotation on the tearing mode in tokamak plasmas[J]. Plasma Science and Technology, 2020, 22(6): 65102-065102. DOI: 10.1088/2058-6272/ab77d4
    [3]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [4]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [5]Long CHEN (陈龙), Jinyuan LIU (刘金远), Ping DUAN (段萍), Guangrui LIU (刘广睿), Xingyu BIAN (边兴宇). Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma[J]. Plasma Science and Technology, 2017, 19(2): 24002-024002. DOI: 10.1088/2058-6272/19/2/024002
    [6]JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
    [7]ZHANG Hao (张浩), ZHU Fengsen (朱凤森), TU Xin (屠昕), BO Zheng (薄拯), CEN Kefa (岑可法), LI Xiaodong (李晓东). Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas[J]. Plasma Science and Technology, 2016, 18(5): 473-477. DOI: 10.1088/1009-0630/18/5/05
    [8]LAN Chaohui (蓝朝晖), PENG Yufei (彭宇飞), YANG Zhen (杨振), LONG Jidong (龙继东). Transient Behavior of Negative Hydrogen Ion Extraction from Plasma[J]. Plasma Science and Technology, 2013, 15(9): 945-949. DOI: 10.1088/1009-0630/15/9/21
    [9]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [10]SONG Huimin(宋慧敏), ZHANG Qiaogen(张乔根), LI Yinghong(李应红), JIA Min(贾敏), WU Yun(吴云), LIANG Hua(梁华). Plasma Sheet Actuator Driven by Repetitive Nanosecond Pulses with a Negative DC Component[J]. Plasma Science and Technology, 2012, 14(4): 327-332. DOI: 10.1088/1009-0630/14/4/11
  • Cited by

    Periodical cited type(2)

    1. Yang, H., Zhang, J., Shen, Z. Water-based metamaterial absorber for temperature modulation. Physica Scripta, 2024, 99(10): 105563. DOI:10.1088/1402-4896/ad7b8a
    2. Liu, Y.L., Chen, W.C., Guo, B. Magneto-optical effects on the properties of the photonic spin Hall effect owing to the defect mode in photonic crystals with plasma. AIP Advances, 2019, 9(7): 075111. DOI:10.1063/1.5094664

    Other cited types(0)

Catalog

    Article views (293) PDF downloads (749) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return