Advanced Search+
ZHANG Hao (张浩), ZHU Fengsen (朱凤森), TU Xin (屠昕), BO Zheng (薄拯), CEN Kefa (岑可法), LI Xiaodong (李晓东). Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas[J]. Plasma Science and Technology, 2016, 18(5): 473-477. DOI: 10.1088/1009-0630/18/5/05
Citation: ZHANG Hao (张浩), ZHU Fengsen (朱凤森), TU Xin (屠昕), BO Zheng (薄拯), CEN Kefa (岑可法), LI Xiaodong (李晓东). Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas[J]. Plasma Science and Technology, 2016, 18(5): 473-477. DOI: 10.1088/1009-0630/18/5/05

Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

Funds: supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)
More Information
  • Received Date: September 06, 2015
  • In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.
  • 1 Tu X, Whitehead J C. 2014, Int. J. Hydrogen Energ.,39: 9658 2 Tu X, Yu L, Yan J H, et al. 2010, IEEE Trans. Plasma Sci., 38: 3319 3 Ni M J, Yang H, Chen T, et al. 2015, Plasma Sci.Technol., 17: 209 4 Li X D, Zhang H, Yan S X, et al. 2013, IEEE Trans.Plasma Sci., 41: 126 5 Gutsol A, Rabinovich A, Fridman A. 2011, J. Phys. D:Appl. Phys., 44: 274001 6 Petitpas G, Rollier J, Darmon A, et al. 2007, Int. J.Hydrogen Energ., 32: 2848 7 Zhang H, Li X D, Zhang Y Q, et al. 2012, IEEE Trans.Plasma Sci., 40: 3493 8 Tu X, Gallon H J, Whitehead J C. 2011, IEEE Trans.Plasma Sci., 39: 2900 9 Zhang C, Shao T, Xu J, et al. 2012, IEEE Trans.Plasma Sci., 40: 2843 10 Zhang H, Du C M, Wu A J, et al. 2014, Int. J. Hydrogen Energ., 39: 12620 11 Feng Z, Saeki N, Kuroki T, et al. 2012, Appl. Phys.Lett., 101: 41602 12 Zhu J, Gao J, Li Z, et al. 2014, Appl. Phys. Lett., 105:234102 13 Lee D H, Kim K T, Cha M S, et al. 2007, P. Combust.Inst., 31: 3343 14 Kalra C S, Cho Y I, Gutsol A, et al. 2005, Rev. Sci.Instrum., 76: 25110 15 Baba T, Takeuchi Y, Stryczewska H D, et al. 2012,Przeglad Elektrotechniczny, 88: 86 16 Baeva M, Uhrlandt D. 2011, Plasma Sources Sci. Technol., 20: 035008 17 Yang F, Rong M Z, Wu Y, et al. 2010, J. Phys. D:Appl. Phys., 43: 434011 18 Rong M Z, Sun H, Yang F, et al. 2014, Phys. Plasmas,21: 112117 19 Shao T, Tarasenko V F, Yang W, et al. 2014, Plasma Sources Sci. Technol., 23: 54018 20 Shao T, Zhang C, Niu Z, et al. 2011, Appl. Phys. Lett.,98: 21503 21 Tu X, Whitehead J C. 2012, Appl. Catal. B: Environ.,125: 439 22 Panousis E, Merbahi N, Cl′ ement F, et al. 2009, IEEE Trans. Plasma Sci., 37: 1004 23 Tu X, Yu L, Yan J H, et al. 2009, Phys. Plasmas, 16:113506 24 Pan W X, Xian M, Wu C K. 2006, Plasma Sci. Technol., 8: 416 25 Eckert E, Pfender E, Wutzke S A. 1967, AIAA J., 5:707 26 Moreau E, Chazelas C, Mariaux G, et al. 2006, J.Therm. Spray Technol., 15: 524 27 Tu X, Yan J H, Yu L, et al. 2007, Appl. Phys. Lett.,91: 131501 28 Dorier J L, Gindrat M, Hollenstein C, et al. 2001,IEEE Trans. Plasma Sci., 29: 494
  • Related Articles

    [1]Bowen RUAN (阮博文), Zhoujun YANG (杨州军), Xiaoming PAN (潘晓明), Hao ZHOU (周豪), Fengqi CHANG (常风岐), Jing ZHOU (周静). Estimation of magnetic island width by the fluctuations of electron cyclotron emission radiometer on J-TEXT[J]. Plasma Science and Technology, 2019, 21(1): 15102-015102. DOI: 10.1088/2058-6272/aae382
    [2]Yonghua DING (丁永华), Zhongyong CHEN (陈忠勇), Zhipeng CHEN (陈志鹏), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Qiming HU (胡启明), Bo RAO (饶波), Jie CHEN (陈杰), Zhifeng CHENG (程芝峰), Li GAO (高丽), Zhonghe JIANG (江中和), Lu WANG (王璐), Zhijiang WANG (王之江), Xiaoqing ZHANG (张晓卿), Wei ZHENG (郑玮), Ming ZHANG (张明), Ge ZHUANG (庄革), Qingquan YU (虞清泉), Yunfeng LIANG (梁云峰), Kexun YU (于克训), Xiwei HU (胡希伟), Yuan PAN (潘垣), Kenneth William GENTLE, the J-TEXT Team. Overview of the J-TEXT progress on RMP and disruption physics[J]. Plasma Science and Technology, 2018, 20(12): 125101. DOI: 10.1088/2058-6272/aadcfd
    [3]Guo XU (徐国), Bo RAO (饶波), Yonghua DING (丁永华), Mao LI (李茂), Da LI (李达), Ruo JIA (贾若), Minxiong YAN (严民雄), Xinke JI (吉新科), Nengchao WANG (王能超), Zhuo HUANG (黄卓), Daojing GUO (郭道靖), Lai PENG (彭莱). Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(8): 85601-085601. DOI: 10.1088/2058-6272/aabd2f
    [4]Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73
    [5]Donghui XIA (夏冬辉), Fangtai CUI (崔芳泰), Changhai LIU (刘昌海), Zhenxiong YU (余振雄), Yikun JIN (金易坤), Zhijiang WANG (王之江), J-TEXT team. The anode power supply for the ECRH system on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(1): 14018-014018. DOI: 10.1088/2058-6272/aa936d
    [6]LIU Yukai (刘煜锴), GAO Li (高丽), LIU Haiqing (刘海庆), YANG Yao (杨曜), GAO Xiang (高翔), J-TEXT Team. Fast Data Processing of a Polarimeter-Interferometer System on J-TEXT[J]. Plasma Science and Technology, 2016, 18(12): 1143-1147. DOI: 10.1088/1009-0630/18/12/01
    [7]ZHANG Fan (张帆), XU Tao (徐涛), SUN Xinfeng (孙新锋), ZHANG Xiaoqing (张晓卿), ZHUANG Ge (庄革), JIAN Xiang (简翔). Equilibrium Reconstruction and Its Integration in J-TEXT[J]. Plasma Science and Technology, 2016, 18(7): 786-790. DOI: 10.1088/1009-0630/18/7/15
    [8]ZHANG Zepin(张泽品), CHENG Zhifeng(程芝峰), LUO Jian(罗剑), WANG Zhijiang(王之江), ZHANG Xiaolong(张晓龙), HOU Saiying(侯赛英), CHENG Cheng(成诚). Implementation of Automatic Process of Edge Rotation Diagnostic System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2014, 16(8): 789-793. DOI: 10.1088/1009-0630/16/8/10
    [9]XIAO Jinshui(肖金水), YANG Zhoujun(杨州军), ZHUANG Ge(庄革), HU Qiming(胡启明), FENG Xiande(冯先德), LIU Minghai(刘明海). Plasma Response to Supersonic Molecular Beam Injection in J-TEXT[J]. Plasma Science and Technology, 2014, 16(1): 17-20. DOI: 10.1088/1009-0630/16/1/04
    [10]HAO Changduana(郝长端), ZHANG Minga(张明), DING Yonghua(丁永华), RAO Boa(饶波), CEN Yishuna(岑义顺), ZHUANG Ge(庄革). Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak[J]. Plasma Science and Technology, 2012, 14(1): 83-88. DOI: 10.1088/1009-0630/14/1/18

Catalog

    Article views (459) PDF downloads (765) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return