Advanced Search+
ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
Citation: ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11

Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker

Funds: supported by National Natural Science Foundation of China (Nos. 51177005 and 51477004)
More Information
  • Received Date: September 07, 2015
  • The nozzle ablation process is described as two phases of heat and ablation in the interruption for an SF6 circuit breaker in this paper. Their mathematical models are established with the Fourier heat conduction differential equation respectively. The masses of nozzle ablation with different arc durations and arc currents are calculated through the model of the nozzle abla¬tion combined with an MHD (magneto-hydrodynamic) arc model. The time of the temperature rise on the inner surface of the nozzle under a given energy flux and of reaching the pyrolysis temperature under different energy fluxes is respectively analyzed. The relations between the mass of nozzle ablation and breaking current and arc duration are obtained. The result shows that the absorbing energy process before the nozzle ablation can be neglected under the condition of the energy flux entering into nozzle q>109 W/m2 . The ablation is the severest during the high-current phase and the ablation mass increases rapidly with the breaking current and with arc duration respectively.
  • 1 Zhang J L, Yan J D, Murphy A B, et al. 2002, IEEE Transactions on Plasma Science, 30: 706 2 Yang F, Rong M Z, Wu Y, et al. 2011, IEEE Transactions on Plasma Science, 39: 2862 3 Jia J J, Zhao C Z, Cao G B. 1991, High Voltage Apparatus, 27: 9 (in Chinese) 4 Osawa N, Yoshioka Y. 2010, IEEE Transactions on Power Delivery, 25: 755 5 Muratovic M, Kapetanovic M, Ahmethodzic A, et al.2013, Nozzle ablation model: Calculation of nozzle ablation intensity and its influence on state of SF 6 gas in thermal chamber. IEEE International Conference on Solid Dielectrics, Bologna, Italy 6 Wang W Z, Wu Y, Rong M Z, et al. 2012, Journal of Physics D: Applied Physics, 45: 285201 7 Ruchti C B, Niemeyer L. 1986, IEEE Transactions on Plasma Science, PS-14: 423 8 Zhang J M, Yan J D. 2014, IEEE Transactions on Plasma Science, 42: 2117 9 Li M, Wu Y, Wu Y F, et al. 2014, IEEE Transactions on Plasma Science, 42: 2714 10 Muller L. 1993, Journal of Physics D: Applied Physics,26: 1253
  • Related Articles

    [1]Yanze SONG, Jinjian ZHAO, Bowen ZHENG, Zihao XIE, Guishu LIANG, Qing XIE. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties[J]. Plasma Science and Technology, 2025, 27(1): 015501. DOI: 10.1088/2058-6272/ad8f0b
    [2]Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee
    [3]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [4]Sen WANG (王森), Wenchun WANG (王文春), Zhijie LIU (刘志杰), Dezheng YANG (杨德正). Comparative research of plasma-assisted milling and traditional milling in synthesizing AlN[J]. Plasma Science and Technology, 2017, 19(6): 64005-064005. DOI: 10.1088/2058-6272/aa62f8
    [5]WANG Yuling (王玉玲), GAO Chao (高超), WU Bin (武斌), HU Xu (胡旭). Simulation of Flow Around Cylinder Actuated by DBD Plasma[J]. Plasma Science and Technology, 2016, 18(7): 768-774. DOI: 10.1088/1009-0630/18/7/12
    [6]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [7]TAO Xiaoping (陶小平), LI Meng (李蒙), LI Hui (李辉), DONG Hai (董海). Experimental Study of ZnO-Coated Alumina DBD in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(8): 787-790. DOI: 10.1088/1009-0630/15/8/13
    [8]Swagat S. RATH, Archana PANY, K. JAYASANKAR, Ajit K. MITRA, C. SATISH KUMAR, Partha S. MUKHERJEE, Barada K. MISHRA. Statistical Modeling Studies of Iron Recovery from Red Mud Using Thermal Plasma[J]. Plasma Science and Technology, 2013, 15(5): 459-464. DOI: 10.1088/1009-0630/15/5/13
    [9]A. RASHIDI, S. SHAHIDI, M. GHORANNEVISS, S. DALALSHARIFI, J. WIENER. Effect of Plasma on the Zeta Potential of Cotton Fabrics[J]. Plasma Science and Technology, 2013, 15(5): 455-458. DOI: 10.1088/1009-0630/15/5/12
    [10]LIU Qifa (刘启发), DING Guifu (丁桂甫), YAN Qun (严群), LIU Chang (刘畅), WANG Yan (王艳). Discharge Simulation and Fabrication Process of an Aluminum Electrode and an Alumina Layer in AC-PDP[J]. Plasma Science and Technology, 2013, 15(4): 368-375. DOI: 10.1088/1009-0630/15/4/11

Catalog

    Article views (389) PDF downloads (613) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return