Advanced Search+
N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
Citation: N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333

The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system

Funds: The author N AHMAD acknowledges the Chinese Scholarship Council (CSC No. 2015GXZQ92) for Ph.D. studies at the University of Science and Technology of China in the category of 2015-CSC Scholarship Awardee.
More Information
  • Received Date: December 03, 2018
  • Charging mechanism of dust particles has been considered as a growing research area in dusty plasma physics because of its exciting results. In this paper, we consider a low-temperature non- equilibrium multispecies plasma model, which consists of Vasyliunas–Cairns (VC) distributed electrons, negative/positive streaming ions, and negatively-charged dust grains to explain the charging mechanism of dust grains. The main theme of this work is to derive expressions of currents for negatively-charged dust grains (considering an equilibrium state position) in the plasma environment comprised of electrons and positive/negative streaming ions using the VC distribution function. Our proposed model shows that the dust grain surface potential is significantly affected by different plasma parameters such as the negative ion streaming velocity (Sn), positive ion streaming velocity (Si), spectral indices of VC distribution, negative ion charging state (Zn), positive ion charging state (Zi), and negative ion number density (ρ).
  • [1]
    Shukla P K and Silin V P 1992 Phys. Scr. 45 508
    [2]
    Rosenberg M 1993 Planet. Space Sci. 41 229
    [3]
    Mendis D A and Rosenberg M 1994 Annul. Rev. Astron. Astrophys. 32 419
    [4]
    D’Angelo N 1995 J. Phys. D 28 1009
    [5]
    Verheest F 1996 Space Sci. Rev. 77 267
    [6]
    Rao N N 1993 J. Plasma Phys. 49 375
    [7]
    El-Taibany W F et al 2018 Indian J. Phys. 92 661
    [8]
    Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: IOP Publishing)
    [9]
    Horanyi M and Mendis D A 1985 Astrophys. J. 294 357
    [10]
    Goertz C K 1989 Rev. Geophys. 27 271
    [11]
    Mendis D A and Rosenberg M 1992 IEEE Trans. Plasma Sci. 20 929
    [12]
    Lee M J and Jung Y D 2018 Eur. Phys. J. D 72 33
    [13]
    Fortov V E et al 2005 Phys. Rep. 421 1
    [14]
    Amemiya H, Annaratone B M and Allen J E 1998 J. Plasma Phys. 60 81
    [15]
    Amemiya H, Annaratone B M and Allen J E 1999 Plasma Sources Sci. Technol. 8 179
    [16]
    Franklin R N 2000 Plasma Sources Sci. Technol. 9 191
    [17]
    Franklin R N 2002 Plasma Sources Sci. Technol. 11 A31
    [18]
    Vyas V, Hebner G A and Kushner M J 2002 J. Appl. Phys. 92 6451
    [19]
    Walch B, Horányi M and Robertson S 1995 Phys. Rev. Lett. 75 838
    [20]
    Barkan A D, D’Angelo N and Merlino R L 1994 Phys. Rev. Lett. 73 3093
    [21]
    Mamun A A and Shukla P K 2003 Phys. Plasmas 10 1518
    [22]
    Abid A A, Ali S and Muhammad R 2013 J. Plasma Phys. 79 1117
    [23]
    Vasyliunas V M 1968 J. Gerophys. Res. 73 2839
    [24]
    Cairns R A et al 1995 Geophys. Res. Lett. 22 2709
    [25]
    Lee M J and Jung Y D 2018 Phys. Plasmas 25 053704
    [26]
    Shahmansouri M, Lee M J and Jung Y D 2018 Phys. Plasmas 25 093701
    [27]
    Maxwell J C 1860 Phil. Mag. 19 19
    [28]
    Dovner P O et al 1994 Geophys. Res. Lett. 21 1827
    [29]
    Bostrom R 1992 IEEE Trans. Plasma Sci. 20 756
    [30]
    Abid A A et al 2015 Phys. Plasmas 22 084507
    [31]
    Rubab N and Murtaza G 2006 Phys. Scr. 73 178
    [32]
    Gong J Y and Du J L 2012 Phys. Plasmas 19 023704
  • Related Articles

    [1]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [2]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [3]Kerong HE (何科荣), Hui CHEN (陈辉), Sanqiu LIU (刘三秋). Effect of plasma absorption on dust lattice waves in hexagonal dust crystals[J]. Plasma Science and Technology, 2018, 20(4): 45001-045001. DOI: 10.1088/2058-6272/aaaadb
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [6]Yunhai HONG (洪运海), Chengxun YUAN (袁承勋), Jieshu JIA (贾洁姝), Ruilin GAO (高瑞林), Ying WANG (王莹), Zhongxiang ZHOU (周忠祥), Xiaoou WANG (王晓鸥), Hui LI (李辉), Jian WU (吴建). Propagation characteristics of microwaves in dusty plasmas with multi-collisions[J]. Plasma Science and Technology, 2017, 19(5): 55301-055301. DOI: 10.1088/2058-6272/aa5b29
    [7]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [8]Jorn HEINE, Roland DAMM, Christoph GERHARD, Stephan WIENEKE, Wolfgang VIOL. Surface Activation of Plane and Curved Automotive Polymer Surfaces by Using a Fittable Multi-Pin DBD Plasma Source[J]. Plasma Science and Technology, 2014, 16(6): 593-597. DOI: 10.1088/1009-0630/16/6/10
    [9]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [10]XIANG Nong, HU Yemin, OU Jing. Bohm criterion for collisionless sheaths in two-ion-species plasmas[J]. Plasma Science and Technology, 2011, 13(4): 385-391.
  • Cited by

    Periodical cited type(4)

    1. Kaur, M., Singla, S., Saini, N.S. et al. Ion Acoustic Breathers in Electron-Beam Plasma. 2023, 6(3): 503-517. DOI:10.3390/plasma6030035
    2. Sarkar, S., Paul, S., Parvin, S. Collective effect of nonthermal and suprathermal particles on electrostatic waves and instabilities in Vasyliunas-Cairns distributed plasmas. Physica Scripta, 2023, 98(4): 045617. DOI:10.1088/1402-4896/acc433
    3. Kaur, M., Saini, N.S. KP, MKP, and CKP dust ion acoustic solitons in a multispecies non-Maxwellian plasma. Physics of Plasmas, 2022, 29(3): 33701. DOI:10.1063/5.0083182
    4. LEE, S., LIM, H. Landau damping of twisted waves in Cairns distribution with anisotropic temperature. Plasma Science and Technology, 2021, 23(8): 085001. DOI:10.1088/2058-6272/ac01be

    Other cited types(0)

Catalog

    Article views (145) PDF downloads (250) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return