Advanced Search+
Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
Citation: Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491

Dust acoustic shock waves in magnetized dusty plasma

More Information
  • Received Date: December 23, 2017
  • We have presented a theoretical study of the dust acoustic (DA) shock structures in a magnetized, electron depleted dusty plasma in the presence of two temperature superthermal ions. By deriving a Korteweg–de Vries–Burgers equation and studying its shock solution, we aim to highlight the effects of magnetic field and obliqueness on various properties of the DA shock structures in the presence of kappa-distributed two temperature ion population. The present model is motivated by the observations of Geotail spacecraft in the Earth's magnetotail and it is seen that the different physical parameters such as superthermality of the cold and hot ions, the cold to hot ion temperature ratio, the magnetic field strength, obliqueness and the dust kinematic viscosity greatly influence the dynamics of the shock structures so formed. The results suggest that the variation of superthermalities of the cold and hot ions have contrasting effects on both positive and negative polarity shock structures. Moreover, it is noted that the presence of the ambient magnetic field affects the dispersive properties of the medium and tends to make the shock structures less wide and more abrupt. The findings of present investigation may be useful in understanding the dynamics of shock waves in dusty plasma environments containing two temperature ions where the electrons are significantly depleted.
  • [1]
    Zang L P and Wang J K 2006 Phys. Plasmas 13 022303
    [2]
    Shahmansouri M and Mamun A A 2014 J. Plasma Phys. 80 593
    [3]
    El-Hanbaly A M et al 2015 J. Theor. Appl. Phys. 9 167
    [4]
    Chahal B S et al 2017 J. Theor. Appl. Phys. 11 181
    [5]
    Shahmansouri M 2014 Phys. Scr. 89 075604
    [6]
    Ferdousi et al 2015 Astrophys. Space Sci. 360 43
    [7]
    Tasnim I et al 2015 IEEE Trans. Plasma Sci. 43 2187
    [8]
    Ghai Y and Saini N S 2017 Astrophys. Space Sci. 362 58
    [9]
    Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: IOP Publishing)
    [10]
    Rao N N et al 1990 Planet. Space Sci. 38 543
    [11]
    Barkan A et al 1995 Phys. Plasmas 2 3563
    [12]
    Shukla P K 1992 Phys. Scr. 45 508
    [13]
    Melands? F and Shukla P K 1995 Planet. Space Sci. 43 635
    [14]
    Homann A et al 1997 Phys. Rev. E 56 7138
    [15]
    Goertz C K 1989 Rev. Geophys. 27 271
    [16]
    Mendis D A and Rosenberg M 1994 Annu. Rev. Astron.Astrophys. 32 419
    [17]
    Shahmansouri M and Tribeche M 2012 Astrophys. Space Sci.342 87
    [18]
    Shahmansouri M and Alinejad H 2013 Phys. Plasmas 20 033704
    [19]
    Sahu B and Tribeche M 2012 Astrophys. Space Sci. 338 259
    [20]
    Hellberg M A et al 2009 Phys. Plasmas 16 094701
    [21]
    Armstrong T P 1983 J. Geophys. Res. 88 8893
    [22]
    Leubner M P 1982 J. Geophys. Res. 87 6335
    [23]
    Lui A T Y et al 1982 J. Geophys. Res. 87 8315
    [24]
    Scudder J D 1992a Astrophys. J. 398 299
    [25]
    Scudder J D 1992b Astrophys. J. 398 319
    [26]
    Seki K et al 2003 Nature 422 589
    [27]
    Nishino M N et al 2005 COSPAR Colloq. Ser. 16 28
    [28]
    Zhang L P and Xue J K 2005 Phys. Plasmas 12 042304
    [29]
    Zhang L P and Xue J K 2008 Phys. Plasmas 15 053706
    [30]
    Sahu B et al 2014 Phys. Plasmas 21 103701
    [31]
    Borhanian J and Shahmansouri M 2013 Phys. Plasmas 20 013707
    [32]
    Sabetkar A and Dorranian D 2015 J. Theor. Appl. Phys. 9 141
    [33]
    Washimi H and Taniuti T 1966 Phys. Rev. Lett. 17 996
    [34]
    Malfliet W and Hereman W 1996 Phys. Scr. 54 563
  • Related Articles

    [1]Muhammad KHALID, Ghufran ULLAH, Mohsin KHAN, Sheraz AHMAD, Sardar NABI, Daud KHAN. Oblique propagation of nonlinear ion-acoustic cnoidal waves in magnetized electron–positron–ion plasmas with nonextensive electrons[J]. Plasma Science and Technology, 2021, 23(3): 35301-035301. DOI: 10.1088/2058-6272/abda23
    [2]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [3]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [4]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [5]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [6]WANG Maoyan (王茂琰), ZHANG Meng (张猛), LI Guiping (李桂萍), JIANG Baojun (姜宝钧), ZHANG Xiaochuan (张小川), XU Jun (徐军). FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma[J]. Plasma Science and Technology, 2016, 18(8): 798-803. DOI: 10.1088/1009-0630/18/8/02
    [7]LIU Congbo (刘丛波), WANG Linxue (王林雪), YANG Xue (杨学), SHI Yuren (石玉仁). Transverse Instability of Dust-Acoustic Solitary Waves in Magnetized Dusty Plasmas[J]. Plasma Science and Technology, 2015, 17(4): 298-302. DOI: 10.1088/1009-0630/17/4/07
    [8]Apul N. DEV, Jnanjyoti SARMA, Manoj K. DEKA, Nirab C. ADHIKARY. Dust Acoustic Shock Waves with Non-Thermal and Vortex-Like Ions in Dusty Plasma[J]. Plasma Science and Technology, 2015, 17(4): 268-275. DOI: 10.1088/1009-0630/17/4/02
    [9]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [10]JIANG Songsheng (蒋崧生), HE Ming (何明). Anomalous nuclear reaction in Earth’s interior: a new field in physics science?[J]. Plasma Science and Technology, 2012, 14(5): 438-441. DOI: 10.1088/1009-0630/14/5/25

Catalog

    Article views (220) PDF downloads (721) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return