Advanced Search+
Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
Citation: Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a

Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions

Funds: The authors also acknowledge DRS-II (SAP) no. F 530/17/DRS-II/2015 (SAP-I) University Grants Commission, New Delhi, India.
More Information
  • Received Date: November 29, 2017
  • The propagation characteristics of dust acoustic solitary and rogue waves are investigated in an unmagnetized ion beam plasma with electrons and ions following kappa-type distribution in nonplanar geometry. The reductive perturbation method (RPM) is employed to derive the cylindrical/spherical Korteweg–de Vries (KdV) equation, which is further transformed into standard KdV equation by neglecting the geometrical effects. Using new stretching coordinates, nonlinear Schr?dinger equation (NLSE) has been derived from the standard KdV equation to study the different order rational solutions of dust acoustic rogue waves (DARWs). The impact of various physical parameters on the characteristics of dust acoustic solitary waves (DASWs) is elaborated specifically in nonplanar geometry. Further, the effects of ion beam and superthermality of electrons/ions on the characteristics of DARWs are studied. The results obtained in the present investigation may be useful in comprehending a variety of phenomena in Earth's magnetosphere polar cap region where the presence of positive ion beam has been detected and also in other regions of space/astrophysical environments where dust along with superthermal electrons and ions exists.
  • [1]
    Geortz C K 1989 Rev. Geophys. 27 271
    [2]
    Mendis D A and Rosenberg M 1994 Annu. Rev. Astron. Astrophys. 32 419
    [3]
    Horanyi M 1996 Astron. Astrophys. Rev. 34 383
    [4]
    Rao N N et al 1990 Planet. Space Sci. 38 543
    [5]
    Barkan A et al 1995 Phys. Plasmas 2 3563
    [6]
    Bandyopadhyay P et al 2008 Phys. Rev. Lett. 101 065006
    [7]
    Mitchell D G et al 2009 J. Geophys. Res. 114 A02212
    [8]
    Badman S V et al 2012 J. Geophys. Res. 117 A01211
    [9]
    Adhikary N C et al 2010 Phys. Plasmas 17 044502
    [10]
    Kaur N et al 2018 IEEE Trans. Plasma Sci. 46 768
    [11]
    Zian W et al 2016 Plasma Sci. Tech. 18 1076
    [12]
    Kaur N et al 2017 Phys. Plasmas 24 092108
    [13]
    Lotekar A et al 2016 Phys. Plasmas 23 102108
    [14]
    Lotekar A et al 2017 Phys. Plasmas 24 102127
    [15]
    Sahu B and Roychoudhury R 2003 Phys. Plasmas 10 4162
    [16]
    Xu J K 2005 Phys. Plasmas 12 012314
    [17]
    Rahman A et al 2013 Phys. Plasmas 20 072103
    [18]
    El-Labany S K et al 2015 Phys. Plasmas 22 073702
    [19]
    Kharif C et al 2009 Rogue Waves in the Ocean (Berlin: Springer) (https://doi.org/10.1007/978-3-540-88419-4)
    [20]
    Moslem W M et al 2011 Phys. Rev. E 84 066402
    [21]
    Bailung H et al 2011 Phys. Rev. Lett. 107 255005
    [22]
    Guo S et al 2013 Phys. Lett. A 377 2118
    [23]
    Kaur N and Saini N S 2016 Astrophys. Space Sci. 361 331
    [24]
    Tsai Y Y et al 2016 Nature Phys. 12 573
    [25]
    Chen W M et al 1990 J. Geophs. Res. 95 3907
    [26]
    Saini N S et al 2009 Phys. Plasmas 16 062903
    [27]
    Maxon S and Viecelli J 1974 Phys. Rev. Lett. 32 46
    [28]
    Maxon S and Viecelli J 1974 Phys. Fluids 17 1614
    [29]
    Ghosh D K et al 2012 Indian J. Phys. 86 829
    [30]
    El-Labany S K et al 2012 Astrophys. Space Sci. 338 3
    [31]
    Saini N S and Kourakis I 2008 Phys. Plasmas 15 123701
    [32]
    Moslem W M 2011 Phys. Plasmas 18 032301
    [33]
    Chabchoub A et al 2012 Phys. Rev. X 2 011015
    [34]
    Akhmediev N et al 2009 Phys. Rev. E 80 026601
    [35]
    Peregrine D H 1983 J. Aust. Math. Soc. Ser. B, Appl. Math. 25 16
    [36]
    Merlino R L and Goree J 2004 Phys. Today 57 32
    [37]
    Kersten H et al 2006 Plasma Phys. Cont. Fusion 48 B105
    [38]
    Tian B and Gao Y T 2005 Phys. Plasmas 12 054701
    [39]
    Ghosh S K et al 2015 Phys. Scr. 90 125601
    [40]
    Tang W M 1978 Nucl. Fusion 18 1089
    [41]
    da Jornada E H et al 1981 J. Plasma Phys. 26 193
    [42]
    Izvekova Y N and Popel S I 2011 AIP Conf. Proc. 1397 247
    [43]
    Xue J K and Lang H 2003 Phys. Plasmas 10 339
  • Related Articles

    [1]Jingchun LI (李景春), Jiaqi DONG (董家齐), Songfen LIU (刘松芬). Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles[J]. Plasma Science and Technology, 2020, 22(5): 55101-055101. DOI: 10.1088/2058-6272/ab62e4
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Sona BANSAL, Munish AGGARWAL, Tarsem S GILL. Study of obliquely propagating electron acoustic shock waves with non-extensive electron population[J]. Plasma Science and Technology, 2019, 21(1): 15301-015301. DOI: 10.1088/2058-6272/aaead8v
    [4]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [5]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [6]GUO Bin (郭斌 ), SONG Zhiquan (宋执权 ), FU Peng (傅鹏 ), JIANG Li (蒋力 ), LI Jinchao (李金超), WANG Min (王敏), DONG Lin (董琳). Thermal Dissipation Modelling and Design of ITER PF Converter Alternating Current Busbar[J]. Plasma Science and Technology, 2016, 18(10): 1049-1054. DOI: 10.1088/1009-0630/18/10/14
    [7]Apul N. DEV, Manoj K. DEKA, Rajesh SUBEDI, Jnanjyoti SARMA. Dust Acoustic Compressive Waves in a Warm Dusty Plasma Having Non-Thermal Ions and Non-Isothermal Electrons[J]. Plasma Science and Technology, 2015, 17(9): 721-727. DOI: 10.1088/1009-0630/17/9/01
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [10]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01

Catalog

    Article views (185) PDF downloads (434) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return