Advanced Search+
A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
Citation: A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f

Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations

Funds: A A Abid acknowledges the support from Chinese Academy of Science (CAS) and TWAS for his Ph.D studies at the University of Science and Technology of China in the cate- gory of a 2016 CAS-TWAS President’s Fellowship Awardee (Series No. 2016-172). This work was also partially supported by National Natural Science Foundation of China (Nos. 41331067, 41774169, and 41527804), and the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-DQC010).
More Information
  • Received Date: October 17, 2018
  • By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electron- acoustic (EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam electrons with immobile neutralized positive ions. Numerical analyses have identified that EA waves with a sufficiently large amplitude tend to trap cold electrons. Because EA waves are dispersive, where the wave modes with different wavenumbers have different phase velocities, the trapping may lead to the mixing of cold electrons. The cold electrons finally get thermalized or heated. The investigation also shows that the excited EA waves give rise to a broad range of wave frequencies, which may be helpful for understanding the broadband-electrostatic-noise spectrum in the Earth’s auroral region.
  • [1]
    Mace R L and Hellberg M A 1990 J. Plasma Phys. 43 239
    [2]
    Valentini F, O’Neil T M and Dubin D H E 2006 AIP Conf. Proc. 862 3
    [3]
    Rehman A et al 2016 Phys. Plasmas 23 082122
    [4]
    Mamun A A, Shukla P K and Stenflo L 2002 Phys. Plasmas 9 1474
    [5]
    Roth I and Hudson M K 1986 J. Geophys. Res. 91 8001
    [6]
    Thomsen M F et al 1983 J. Geophys. Res. 88 3035
    [7]
    Mace R L and Hellberg M A 1993 J. Geophys. Res. 98 5881
    [8]
    Ergun R E et al 2001 Phys. Rev. Lett. 87 045003
    [9]
    Fried D B and Gould R W 1961 Phys. Fluids 4 139
    [10]
    Watanabe K and Taniuti T 1977 J. Phys. Soc. Jpn. 43 1819
    [11]
    Landau L D 1946 J. Phys. (Moscow) 10 25
    [12]
    Summers D and Thorne R M 1991 Phys. Fluids B 3 1835
    [13]
    Rehman A and Lee J K 2018 Phys. Plasmas 25 022107
    [14]
    Gary S P and Tokar R L 1985 Phys. Fluids 28 2439
    [15]
    Tokar R L and Gary S P 1984 Geophys. Res. Lett. 11 1180
    [16]
    Yu B et al 2018 Chin. J. Geophys. 61 3536 (in Chinese)
    [17]
    Ergun R E et al 1998 Geophys. Res. Lett. 25 2041
    [18]
    Cattell C A et al 1999 Geophys. Res. Lett. 26 425
    [19]
    Dubouloz N et al 1991 Geophys. Res. Lett. 18 155
    [20]
    Singh S V, Reddy R V and Lakhina G S 2009 Adv. Space Phys. 43 1940
    [21]
    El-Taibany W F and Moslem W M 2005 Phys. Plasmas 12 032307
    [22]
    Matsukiyo S, Treumann R A and Scholer M 2004 J. Geophys. Res. 109 A06212
    [23]
    Berthomier M et al 2000 Phys. Plasmas 7 2987
    [24]
    Lu Q M, Wang S and Dou X K 2005 Phys. Plasmas 12 072903
    [25]
    Landau L D and Lifshitz E M 1959 Fluid Mechanics (New York: Pergamon)
    [26]
    Sagdeev R Z 1966 Rev. Plasma Phys. 4 23
    [27]
    Montgomery D 1967 Phys. Rev. Lett. 19 1465
    [28]
    Heinrich J, Kim S H and Merlino R L 2009 Phys. Rev. Lett. 103 115002
    [29]
    Schamel H 2000 Phys. Plasmas 7 4831
    [30]
    Abdelwahed H G and El-Shewy E K 2016 Phys. Plasmas 23 082118
    [31]
    Abdelwahed H G, El-Shewy E K and Mahmoud A A 2016 Chin. Phys. Lett. 33 115201
    [32]
    El-Hanbaly A M et al 2015 Commun. Theor. Phys. 64 529
    [33]
    Hafez M G et al 2016 Phys. Plasmas 23 082904
    [34]
    Chen F F 1974 Introduction to Plasma Physics (New York: Plenum Press)
    [35]
    Schriver D 2000 J. Geophys. Res. 105 12919
    [36]
    Treumann R A and Baumjohann W 1997 Advanced Space Plasma Physics (London: Imperial College Press)
    [37]
    Lu Q M and Cai D S 2001 Comput. Phys. Commun. 135 93
    [38]
    Goldman M V, Oppenheim M M and Newman D L 1999 Geophys. Res. Lett. 26 1821
    [39]
    Oppenheim M, Newman D L and Goldman M V 1999 Phys. Rev. Lett. 83 2344
    [40]
    Omura Y, Kojima H and Matsumoto H 1994 Geophys. Res. Lett. 21 2923
    [41]
    Omura Y et al 1996 J. Geophys. Res. 101 2685
    [42]
    Franz J R, Kintner P W and Pickett J S 1998 Geophys. Res. Lett. 25 1277
    [43]
    Tsurutani B T et al 1998 Geophys. Res. Lett. 25 4117
  • Cited by

    Periodical cited type(1)

    1. Das, G.C.. New method for rekindling the explosive waves in Maxwellian space plasmas. Plasma Science and Technology, 2020, 22(12): 125302. DOI:10.1088/2058-6272/abb99d

    Other cited types(0)

Catalog

    Article views (143) PDF downloads (156) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return