Advanced Search+
LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03
Citation: LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03

Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region

Funds: ∗ supported by Science Foundation of Institute of Plasma Physics Chinese Academy of Sciences (No. Y35ETY1304), the JSPS- NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (No. 11261140328), National ITER Plans Program of China (No. 2013GB111002) and National Natural Science Foundation of China (No. 11105178)
More Information
  • Received Date: August 22, 2013
  • Particle-in-cell (PIC) simulation method has been proved to be a good candidate to study the interactions between plasmas and radio-frequency waves. However, for waves in the lower hybrid range of frequencies, a full PIC simulation is not efficient due to its high computational cost. In this work, a gyro-kinetic electron and fully-kinetic ion (GeFi) particle simulation model is applied to study the propagations and mode conversion processes of lower hybrid waves (LHWs) in plasmas. With this method, the computational efficiency of LHW simulations is greatly increased by using a larger grid size and time step. The simulation results in the linear regime are validated by comparison with the linear theory.
  • 1 Fisch N J. 1987, Reviews of Modern Physics, 59: 175
    2 Gormezana C. 1986, Plasma Phys. Control. Fusion, 28:1365
    3 Bonoli P T, Ott E. 1981, Phys. Rev. Lett., 46: 424
    4 Bonoli P T, Ott E. 1982, Phys. Fluids, 25: 359
    5 Ignat D W. 1981, Phys. Fluids, 24: 1110
    6 Brambilla M. 1986, Computer Phys. Rept., 4: 71
    7 Ignat D W, Valeo E J, Jardin S C. 1994, Nucl. Fusion,34: 837
    8 Wright J C, Valeo E J, Phillips C K, et al. 2008, Commun. Comput. Phys., 4: 545
    9 Porkolab M. 1977, Phys. Fluids, 20: 2058
    10 Porkolab M, Bernabei S, Hooke W M, et al. 1977,Phys. Rev. Lett., 38: 230
    11 Jenkins T G, Austin T M, Smithe D N, et al. 2013,Phys. Plasmas, 20: 012116
    12 Xiang N, Cary J R. 2011, Phys. Plasmas, 18: 122107
    13 Stock A, Neudorfer J, Riedlinger M, et al. 2012, IEEE Trans. Plasma Science, 40: 1860
    14 Neudorfer J, Stock A, Schneider R, et al. 2013, IEEE Trans. Plasma Science, 41: 87
    15 Ngadjeu A, Faudot E, Gunn J, et al. 2009, AIP Conf.Proc., 1187: 161
    16 Austin T M, Smithe D N. 2011, AIP Conf. Proc., 1406:377
    17 Rantamaki K M, Pattikangas T J H, Karttunen S J,et al. 1999, Plasma Phys. Control. Fusion, 41: 1125
    18 Rantamaki K M, Pattikangas T J H, Karttunen S J,et al. 2002, Plasma Phys. Control. Fusion, 44: 1349
    19 Bae Y S, Cho M H, Namkung W. 2004, Journal of the Korean Physical Society, 44: 1207
    20 Bret A, Dieckmann M E. 2010, Phys. Plasmas, 17:032109
    21 Lin Y, Wang X, Lin Z, et al. 2005, Plasma Phys. Control. Fusion, 47: 657
    22 Lin Y, Wang X, Chen L, et al. 2011, Plasma Phys.Control. Fusion, 53: 054013
    23 Wang X Y, Lin Y, Chen L, et al. 2011, Phys. Plasmas,18: 122102
    24 Qi L, Wang X Y, Lin Y. 2013, Phys. Plasmas, 20:062107
    25 Bonoli P T, Englade R C. 1986, Phys. Fluids, 29: 2937
    26 Stix T H. 1965, Phys. Rev. Lett., 15: 878
    27 Ushigusa K. 1999, Lower hybrid current drive in tokamak plasmas. Japan Atomic Energy Research Institute, Ibaraki-ken, p.1339

Catalog

    Article views (185) PDF downloads (1115) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return