Advanced Search+
Jingchun LI (李景春), Jiaqi DONG (董家齐), Songfen LIU (刘松芬). Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles[J]. Plasma Science and Technology, 2020, 22(5): 55101-055101. DOI: 10.1088/2058-6272/ab62e4
Citation: Jingchun LI (李景春), Jiaqi DONG (董家齐), Songfen LIU (刘松芬). Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles[J]. Plasma Science and Technology, 2020, 22(5): 55101-055101. DOI: 10.1088/2058-6272/ab62e4

Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles

Funds: This work is supported by the National Key R&D Program of China (Nos. 2018YFE0303102 and 2017YFE0301702), US SciDAC GSEP, the NSFC (Nos. 11905109 and 11947238), the China Postdoctoral Science Foundation (No. 2018M640230), and the Fundamental Research Funds for the Central Universities, Nankai University (63191351).
More Information
  • Received Date: August 19, 2019
  • Revised Date: December 12, 2019
  • Accepted Date: December 16, 2019
  • The ion temperature gradient (ITG) mode in the presence of impurity ions and trapped electrons (TEs) is numerically investigated in tokamak plasmas with hollow density profiles, using the gyrokinetic integral eigenmode equation. It is found that in the inverted density plasma, the increase of the ITG enhances the growth rate and frequency of the ITG, and the density gradient plays an important role in the ITG modes. For weak density gradient situations, the trapped electron effects increase the instability of the ITG, while the impurity has an obviously stabilizing effect. For the strong density gradient cases, both the impurities and trapped electrons enhance the ITG instabilities. In addition, it is shown that the growth rate of the ITG decreases with positive magnetic shear s while the real frequency increases with positive magnetic shear. The growth rate of the ITG increases with negative magnetic shear s while the real frequency decreases with negative magnetic shear. The length of the calculated mode structure in the positive and negative magnetic shear intervals is also presented.
  • [1]
    Horton W 1999 Rev. Mod. Phys. 71 735
    [2]
    Baylor L R et al 2007 Nucl. Fusion 47 443
    [3]
    Angioni C et al 2017 Nucl. Fusion 57 116053
    [4]
    Valovič M et al 2008 Nucl. Fusion 48 075006
    [5]
    Pégourié B 2007 Plasma Phys. Controlled Fusion 49 R87
    [6]
    Liu F et al 2010 Phys. Plasmas 17 112318
    [7]
    Dong J Q and Horton W 1995 Phys. Plasmas 2 3412
    [8]
    Du H R et al 2014 Phys. Plasmas 21 052101
    [9]
    Dong J Q, Horton W and Dorland W 1994 Phys. Plasmas1 3635
    [10]
    Predebon I, Carraro L and Angioni C 2011 Plasma Phys.Controlled Fusion 53 125009
    [11]
    Liu S F, Guo S C and Dong J Q 2010 Phys. Plasmas 17 052505
    [12]
    Liu C S, Rosenbluth M N and Horton C W Jr 1972 Phys. Rev.Lett. 29 1489
    [13]
    Tang W M et al 1975 Phys. Rev. Lett. 35 660
    [14]
    Hahm T S and Tang W M 1989 Phys. Fluids B: Plasma Phys.1 1185
    [15]
    Adam J C, Tang W M and Rutherford P H 1976 Phys. Fluids19 561
    [16]
    Romanelli M, Bourdelle C and Dorland W 2004 Phys. Plasmas 11 3845
    [17]
    Garzotti L et al 2014 Plasma Phys. Controlled Fusion 56 035004
    [18]
    Baiocchi B et al 2015 Nucl. Fusion 55 123001
    [19]
    Klaywittaphat P and Onjun T 2017 Nucl. Fusion 57 022008
    [20]
    Lang P T et al 2012 Nucl. Fusion 52 023017
    [21]
    Sakamoto R et al 2006 Nucl. Fusion 46 884
    [22]
    Tegnered D et al 2017 Phys. Plasmas 24 072303
    [23]
    Dong J Q, Sanuki H and Itoh K 2001 Phys. Plasmas 8 3635
    [24]
    Du H R et al 2017 Phys. Plasmas 24 122501
    [25]
    Dong J Q and Horton W 1993 Phys. Fluids B: Plasma Phys. 5 1581
    [26]
    Dong J Q, Chen L and Zonca F 1999 Nucl. Fusion 39 1041
    [27]
    Dong J Q 2018 Plasma Sci. Technol. 20 094005
    [28]
    Shen Y et al 2016 Plasma Phys. Controlled Fusion 58045028
    [29]
    Paccagnella R, Romanelli F and Briguglio S 1990 Nucl. Fusion 30 545
    [30]
    Dominguez B R and Staebler G M 1993 Nucl. Fusion 33 51
    [31]
    Ko S H, Jhang H and Singh R 2015 Phys. Plasmas 22082305
    [32]
    Moradi S, Tokar M Z and Weyssow B 2010 Phys. Plasmas 17 012101
  • Related Articles

    [1]Fei CHEN, Yadong LI, Xiaojie WANG, Guojiang WU, Pan LI, Jingsen GENG, Yuhao WANG, Pengjun SUN, Erzhong LI, Tianfu ZHOU, Hailin ZHAO, Qing ZANG, Shouxin WANG, Haiqing LIU, Yifei JIN, Bo LYU, Cheonho BAE, Jiangang LI. Experimental study of density gradient-driven micro-instabilities and the confinement degradation during H-mode in EAST[J]. Plasma Science and Technology, 2023, 25(8): 085102. DOI: 10.1088/2058-6272/acc4aa
    [2]Yuhui ZHANG (张雨晖), Wenjun NING (宁文军), Dong DAI (戴栋), Qiao WANG (王乔). Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(7): 74003-074003. DOI: 10.1088/2058-6272/ab10a7
    [3]Jiaqi DONG (董家齐). Kinetic micro-instabilities in the presence of impurities in toroidal magnetized plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94005-094005. DOI: 10.1088/2058-6272/aad4f4
    [4]H L SWAMI, C DANANI, A K SHAW. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations[J]. Plasma Science and Technology, 2018, 20(6): 65602-065602. DOI: 10.1088/2058-6272/aaabb4
    [5]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [6]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [7]XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04
    [8]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [9]Constantine L. XAPLANTERIS, Eleni D. FILIPPAKI. Influence of an External DC Electric Current on Plasma Cleaning Rate: an Application on the Enlarged Plasma-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 448-454. DOI: 10.1088/1009-0630/15/5/11
    [10]GUO Jun (郭俊). The Evolution of Instabilities Driven by a Drift Between Ions and Electrons in Nonmagnetized Plasma[J]. Plasma Science and Technology, 2013, 15(4): 307-312. DOI: 10.1088/1009-0630/15/4/01
  • Cited by

    Periodical cited type(7)

    1. Shi, P., Zhuang, G., Cheng, Z. et al. Experimental Investigations of Quasi-Coherent Micro-Instabilities in J-TEXT Ohmic Plasmas. Chinese Physics Letters, 2024, 41(5): 055201. DOI:10.1088/0256-307X/41/5/055201
    2. Wu, K., Liu, J., Wang, F. et al. Exploration of anomalous transport based on the use of general conformable fractional derivative in tokamak plasmas. AIP Advances, 2024, 14(1): 015111. DOI:10.1063/5.0179280
    3. Li, J., Liu, S., Zhang, Y. et al. Impact of impurities on drift wave instabilities in reversed-field pinch plasmas. Physical Review E, 2022, 106(4): 045203. DOI:10.1103/PhysRevE.106.045203
    4. Deng, S., Zheng, P.-W., Gong, X.-Y. et al. Separate calculations of the two currents driven by electron cyclotron waves. Journal of the Korean Physical Society, 2022, 81(8): 739-749. DOI:10.1007/s40042-022-00586-9
    5. Wu, K., Wei, L., Wang, Z. Analysis of anomalous transport based on radial fractional diffusion equation. Plasma Science and Technology, 2022, 24(4): 045101. DOI:10.1088/2058-6272/ac41bd
    6. Li, J., Lin, Z., Dong, J. et al. Microturbulence in edge of a tokamak plasma with medium density and steep temperature gradient. Plasma Physics and Controlled Fusion, 2021, 63(12): 125005. DOI:10.1088/1361-6587/ac2cd8
    7. Li, H., Fu, Y., Li, J. et al. Machine learning of turbulent transport in fusion plasmas with neural network. Plasma Science and Technology, 2021, 23(11): 115102. DOI:10.1088/2058-6272/ac15ec

    Other cited types(0)

Catalog

    Article views (204) PDF downloads (127) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return