Advanced Search+
H L SWAMI, C DANANI, A K SHAW. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations[J]. Plasma Science and Technology, 2018, 20(6): 65602-065602. DOI: 10.1088/2058-6272/aaabb4
Citation: H L SWAMI, C DANANI, A K SHAW. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations[J]. Plasma Science and Technology, 2018, 20(6): 65602-065602. DOI: 10.1088/2058-6272/aaabb4

Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

  • Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic-Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return