Advanced Search+
ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
Citation: ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11

Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005), National Natural Science Foundation of China (Nos. 11175035, 10875023), Chinesisch-Deutsches Forschungs Project (GZ768) and the Fundamental Research Funds for the Central Universities (DUT12ZD(G)01)
More Information
  • Received Date: August 27, 2013
  • Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical tool for real- time diagnostics and detection of multiple elements deposited at the first wall of magnetically confined plasma fusion devices. Recently, we have tested LIBS in our laboratory for application to in situ real-time diagnostics in the fusion device EAST. In this study, we applied polarization- resolved LIBS (PR-LIBS) to reduce the background continuum and enhance the resolution and sensitivity of LIBS. We used aluminium (Al) (as a substitute for Be) and the first wall materials tungsten (W) and molybdenum (Mo) to investigate polarized continuum emission and signal-to- background ratio (SBR). A Nd:YAG laser with first, second and third harmonics was used to produce plasma. The effects of the laser polarization plane, environmental pressure and polarizer detection angle were investigated. The spectra obtained without using a polarizer (i.e. LIBS) were compared with those obtained with a polarizer (PR-LIBS). Distribution of emission spectral intensity was observed to follow Malus’ law with respect to variation in the angle of detection of the polarizer. The spectra obtained by PR-LIBS had a higher SBR and greater stability than those obtained by LIBS, thereby enhancing the reliability of LIBS for quantitative analyses. A comparison of Al, Mo and W showed that W exhibited a higher continuum with stronger polarization than the low-Z elements.
  • 1 Rehse S, Salimnia H and Miziolek. 2012, J. Med. Eng.Technol., 36: 77;
    2 Harmon R S, De Lucia F C, Miziolek A W, et al. 2005,Geochem-Explor. Env. A, 5: 21;
    3 Sallé B, Cremers D A, Maurice S, et al. 2005, Spec-trochim. Acta B, 60: 805;
    4 Martin M Z, Wullschleger S and Garten C. 2002, The International Society for Optical Engineering, 2002:188;
    5 Tzortzakis S, Anglos D and Gray D. 2006, Opt. Lett.,31: 1139;
    6 Martin M Z, Labbé N, André N, et al. 2007, Spec-trochim. Acta B, 62: 1426;
    7 Gaudiuso R, Dell'Aglio M, Pascale O D, et al. 2010,Sensors, 10: 7434;
    8 Farid N, Li C, Wang H, et al. 2012, J. Nucl. Mater.,433: 80;
    9 Piip K, Laan M, Paris P, et al. 2013, First Wall Mon-itoring by LIBS: Options and Limitations. 40th EPS Conference on Plasma Physics (O6: 503), European physical Society Plasma Physics Division. Espoo, Fin-land;
    10 Maurya G S, Jyotsana A, Kumar R, et al. 2013, J.Nucl. Mater., 444: 23;
    11 Philipps V, Malaquias A, Hakola A, et al. 2013, Nucl.Fusion, 53: 093002;
    12 Gasior P, Bieda M, Kubkowska M, et al. 2011, Fusion Eng. Des., 86: 1239;
    13 Mercadier L, Hermann J, Grisolia C, et al. 2013, J.Anal. At. Spectrom., 28: 1446;
    14 Fantoni R, Almaviva S, Caneve L, et al. 2013, Spec-trochim. Acta B, 87: 153 Plasma Science and Technology, Vol.16, No.2, Feb. 2014;
    15 Semerok A and Grisolia C. 2012, Nuclear Instruments and Methods in Physics Research Section A, 720: 31;
    16 Hai R, Farid N, Zhao D, et al. 2013, Spectrochim. Acta B, 87: 147;
    17 Hai R, Li C, Wang H B, et al. 2013, J. Nucl. Mater.,438: S1168;
    18 Hai R, Xiao Q, Zhang L, et al. 2013, J. Nucl. Mater.,436: 118;
    19 Xiao Q, Huber A, Sergienko G, et al. 2013, Fusion Eng.Des., 88: 1813;
    20 Wan B. 2009, Nucl. Fusion, 49: 104011;
    21 Coad J, Bekris N, Elder J, et al. 2001, J. Nucl. Mater.,290: 224;
    22 Janeschitz G. 2001, J. Nucl. Mater., 290: 1;
    23 Diwakar P, Harilal S, Freeman J, et al. 2013, Spec-trochim. Acta B, 87: 65;
    24 Su M-G and Dong C-Z. 2013, Eur. Phys. J. Appl.Phys., 61: 30802;
    25 Baudelet M, Guyon L, Yu J, et al. 2006, J. Appl. Phys.,99: 084701;
    26 Cremers D A, Yueh F Y, Singh J P, et al. 2006, Laser-Induced Breakdown Spectroscopy, Elemental Analysis.Wiley Online Library;
    27 Asgill M, Moon H, Omenetto N, et al. 2010, Spec-trochim. Acta B, 65: 1033;
    28 Penczak J S, Liu Y, Schaller R D, et al. 2012, Spec-trochim. Acta B, 74-75: 3;
    29 Agnes N, Tao Hai-Yan, Hao Zuo-Qiang, et al. 2013,Chinese Physics B, 22: 014209;
    30 Penczak J S, Liu Y and Gordon R J. 2011, Spec-trochim. Acta B, 66: 186;
    31 Agnes N, Hao Zuo-Qiang, Jia Liu, et al. 2012, Chinese Physics B, 21: 074204;
    32 Neu R, Dux R, Kallenbach A, et al. 2005, Nucl. Fusion,45: 209;
    33 Litnovsky A, Wienhold P, Philipps V, et al. 2007, J.Nucl. Mater., 363: 1395;
    34 Eslami Majd A, Arabanian A and Massudi R. 2010,Optics and Lasers in Engineering, 48: 750;
    35 Miziolek A W, Palleschi V and Schechter I. 2006, Laser induced breakdown spectroscopy. Cambridge Univer-sity Press ;
    36 Farid N, Wang H, Li C, et al. 2013, J. Nucl. Mater.,438: 183

Catalog

    Article views (309) PDF downloads (1543) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return