Advanced Search+
ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
Citation: ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11

Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005), National Natural Science Foundation of China (Nos. 11175035, 10875023), Chinesisch-Deutsches Forschungs Project (GZ768) and the Fundamental Research Funds for the Central Universities (DUT12ZD(G)01)
More Information
  • Received Date: August 27, 2013
  • Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical tool for real- time diagnostics and detection of multiple elements deposited at the first wall of magnetically confined plasma fusion devices. Recently, we have tested LIBS in our laboratory for application to in situ real-time diagnostics in the fusion device EAST. In this study, we applied polarization- resolved LIBS (PR-LIBS) to reduce the background continuum and enhance the resolution and sensitivity of LIBS. We used aluminium (Al) (as a substitute for Be) and the first wall materials tungsten (W) and molybdenum (Mo) to investigate polarized continuum emission and signal-to- background ratio (SBR). A Nd:YAG laser with first, second and third harmonics was used to produce plasma. The effects of the laser polarization plane, environmental pressure and polarizer detection angle were investigated. The spectra obtained without using a polarizer (i.e. LIBS) were compared with those obtained with a polarizer (PR-LIBS). Distribution of emission spectral intensity was observed to follow Malus’ law with respect to variation in the angle of detection of the polarizer. The spectra obtained by PR-LIBS had a higher SBR and greater stability than those obtained by LIBS, thereby enhancing the reliability of LIBS for quantitative analyses. A comparison of Al, Mo and W showed that W exhibited a higher continuum with stronger polarization than the low-Z elements.
  • 1 Rehse S, Salimnia H and Miziolek. 2012, J. Med. Eng.Technol., 36: 77;
    2 Harmon R S, De Lucia F C, Miziolek A W, et al. 2005,Geochem-Explor. Env. A, 5: 21;
    3 Sallé B, Cremers D A, Maurice S, et al. 2005, Spec-trochim. Acta B, 60: 805;
    4 Martin M Z, Wullschleger S and Garten C. 2002, The International Society for Optical Engineering, 2002:188;
    5 Tzortzakis S, Anglos D and Gray D. 2006, Opt. Lett.,31: 1139;
    6 Martin M Z, Labbé N, André N, et al. 2007, Spec-trochim. Acta B, 62: 1426;
    7 Gaudiuso R, Dell'Aglio M, Pascale O D, et al. 2010,Sensors, 10: 7434;
    8 Farid N, Li C, Wang H, et al. 2012, J. Nucl. Mater.,433: 80;
    9 Piip K, Laan M, Paris P, et al. 2013, First Wall Mon-itoring by LIBS: Options and Limitations. 40th EPS Conference on Plasma Physics (O6: 503), European physical Society Plasma Physics Division. Espoo, Fin-land;
    10 Maurya G S, Jyotsana A, Kumar R, et al. 2013, J.Nucl. Mater., 444: 23;
    11 Philipps V, Malaquias A, Hakola A, et al. 2013, Nucl.Fusion, 53: 093002;
    12 Gasior P, Bieda M, Kubkowska M, et al. 2011, Fusion Eng. Des., 86: 1239;
    13 Mercadier L, Hermann J, Grisolia C, et al. 2013, J.Anal. At. Spectrom., 28: 1446;
    14 Fantoni R, Almaviva S, Caneve L, et al. 2013, Spec-trochim. Acta B, 87: 153 Plasma Science and Technology, Vol.16, No.2, Feb. 2014;
    15 Semerok A and Grisolia C. 2012, Nuclear Instruments and Methods in Physics Research Section A, 720: 31;
    16 Hai R, Farid N, Zhao D, et al. 2013, Spectrochim. Acta B, 87: 147;
    17 Hai R, Li C, Wang H B, et al. 2013, J. Nucl. Mater.,438: S1168;
    18 Hai R, Xiao Q, Zhang L, et al. 2013, J. Nucl. Mater.,436: 118;
    19 Xiao Q, Huber A, Sergienko G, et al. 2013, Fusion Eng.Des., 88: 1813;
    20 Wan B. 2009, Nucl. Fusion, 49: 104011;
    21 Coad J, Bekris N, Elder J, et al. 2001, J. Nucl. Mater.,290: 224;
    22 Janeschitz G. 2001, J. Nucl. Mater., 290: 1;
    23 Diwakar P, Harilal S, Freeman J, et al. 2013, Spec-trochim. Acta B, 87: 65;
    24 Su M-G and Dong C-Z. 2013, Eur. Phys. J. Appl.Phys., 61: 30802;
    25 Baudelet M, Guyon L, Yu J, et al. 2006, J. Appl. Phys.,99: 084701;
    26 Cremers D A, Yueh F Y, Singh J P, et al. 2006, Laser-Induced Breakdown Spectroscopy, Elemental Analysis.Wiley Online Library;
    27 Asgill M, Moon H, Omenetto N, et al. 2010, Spec-trochim. Acta B, 65: 1033;
    28 Penczak J S, Liu Y, Schaller R D, et al. 2012, Spec-trochim. Acta B, 74-75: 3;
    29 Agnes N, Tao Hai-Yan, Hao Zuo-Qiang, et al. 2013,Chinese Physics B, 22: 014209;
    30 Penczak J S, Liu Y and Gordon R J. 2011, Spec-trochim. Acta B, 66: 186;
    31 Agnes N, Hao Zuo-Qiang, Jia Liu, et al. 2012, Chinese Physics B, 21: 074204;
    32 Neu R, Dux R, Kallenbach A, et al. 2005, Nucl. Fusion,45: 209;
    33 Litnovsky A, Wienhold P, Philipps V, et al. 2007, J.Nucl. Mater., 363: 1395;
    34 Eslami Majd A, Arabanian A and Massudi R. 2010,Optics and Lasers in Engineering, 48: 750;
    35 Miziolek A W, Palleschi V and Schechter I. 2006, Laser induced breakdown spectroscopy. Cambridge Univer-sity Press ;
    36 Farid N, Wang H, Li C, et al. 2013, J. Nucl. Mater.,438: 183
  • Related Articles

    [1]Teng Wu, Tao Wu, Shuaichao Zhou, Qing Liao, Peixiang Lu. Deep learning-based spatiotemporal sequence forecasting of physical fields in tin droplet laser-produced plasma[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcb19
    [2]Xiao CHEN, Yao LI, Jianbo HOU, Zhe ZHANG, Xianyang LU, Yu YAN, Liang HE, Yongbing XU. A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography[J]. Plasma Science and Technology, 2023, 25(10): 102001. DOI: 10.1088/2058-6272/acd61e
    [3]Pengpeng MA (麻鹏鹏), Maogen SU (苏茂根), Shiquan CAO (曹世权), Kaiping WANG (王凯平), Weiwei HAN (韩伟伟), Duixiong SUN (孙对兄), Qi MIN (敏琦), Chenzhong DONG (董晨钟). Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020, 22(8): 85502-085502. DOI: 10.1088/2058-6272/ab869b
    [4]Shiquan CAO (曹世权), Maogen SU (苏茂根), Qi MIN (敏琦), Duixiong SUN (孙对兄), Lei WU (吴磊), Siqi HE (何思奇), Kaiping WANG (王凯平), Pengpeng MA (麻鹏鹏), Chenzhong DONG (董晨钟). Measurement and analysis of the extreme ultraviolet emission band of laser-produced antimony plasmas[J]. Plasma Science and Technology, 2019, 21(4): 45001-045001. DOI: 10.1088/2058-6272/aaf7dc
    [5]Deepak SHARMA, Paritosh CHAUDHURI. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module[J]. Plasma Science and Technology, 2018, 20(6): 65604-065604. DOI: 10.1088/2058-6272/aab54a
    [6]Zhenhua HU (胡振华), Cong LI (李聪), Qingmei XIAO (肖青梅), Ping LIU (刘平), Fang DING (丁芳), Hongmin MAO (毛红敏), Jing WU (吴婧), Dongye ZHAO (赵栋烨), Hongbin DING (丁洪斌), Guang-Nan LUO (罗广南), EAST team. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST[J]. Plasma Science and Technology, 2017, 19(2): 25502-025502. DOI: 10.1088/2058-6272/19/2/025502
    [7]Kai GAO (高凯), Nasr A M HAFZ, Song LI (李松), Mohammad IRZAIE, Guangyu LI (李光宇), Quratul AIN. Online plasma diagnostics of a laser-produced plasma[J]. Plasma Science and Technology, 2017, 19(1): 15506-015506. DOI: 10.1088/1009-0630/19/1/015506
    [8]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [9]WU Tao (吴涛), WANG Xinbing (王新兵), WANG Shaoyi (王少义). Spectral Efficiency Extreme Ultraviolet Emission from CO2 Laser-Produced Tin Plasma Using a Grazing Incidence Flat-Field Spectrograph[J]. Plasma Science and Technology, 2013, 15(5): 435-438. DOI: 10.1088/1009-0630/15/5/08
    [10]M. HANIF, M. SALIK, M. A. BAIG. Spectroscopic Studies of the Laser Produced Lead Plasma[J]. Plasma Science and Technology, 2011, 13(2): 129-134.

Catalog

    Article views (310) PDF downloads (1543) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return