Advanced Search+
Pengpeng MA (麻鹏鹏), Maogen SU (苏茂根), Shiquan CAO (曹世权), Kaiping WANG (王凯平), Weiwei HAN (韩伟伟), Duixiong SUN (孙对兄), Qi MIN (敏琦), Chenzhong DONG (董晨钟). Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020, 22(8): 85502-085502. DOI: 10.1088/2058-6272/ab869b
Citation: Pengpeng MA (麻鹏鹏), Maogen SU (苏茂根), Shiquan CAO (曹世权), Kaiping WANG (王凯平), Weiwei HAN (韩伟伟), Duixiong SUN (孙对兄), Qi MIN (敏琦), Chenzhong DONG (董晨钟). Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020, 22(8): 85502-085502. DOI: 10.1088/2058-6272/ab869b

Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air

Funds: This work is supported by the National Key Research and Development Program of China (No. 2017YFA0402300), National Natural Science Foundation of China (Nos. 11874051, 11564037, 61741513, 11904293), and the Special Fund Project for Guiding Scientific and Technological Inno- vation of Gansu Province (No. 2019zx-10).
More Information
  • Received Date: January 17, 2020
  • Revised Date: March 31, 2020
  • Accepted Date: April 02, 2020
  • A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering (TS) method. The evolutions of the electron temperature and electron density were obtained as a function of the time delay which ranged from 300–3200 ns. The heating effect produced by the 532 nm probe beam with different energies on the air plasma at different interaction times was further studied using a time-resolved optical emission spectroscopy technique. The influence of the probe beam on the electron density was found to be negligible, whereas its influence on electron temperature is evident. In addition, the heating effect of the probe beam on the plasma strongly depends on the energy of the probe beam, and gradually weakens with increasing time delay. Our results are helpful for further understanding the TS method and its application in plasma diagnostics.
  • [1]
    Radziemski L J 2002 Spectrochim. Acta Part B 57 1109
    [2]
    May-Smith T C et al 2008 Appl. Opt. 47 1767
    [3]
    Ohashi H et al 2014 J. Appl. Phys. 115 033302
    [4]
    Zhao H Y et al 2014 Rev. Sci. Instrum. 85 02B910
    [5]
    Hough P et al 2012 Meas. Sci. Technol. 23 125204
    [6]
    Pakhal H R, Lucht R P and Laurendeau N M 2008 Appl. Phys.B 90 15
    [7]
    Su M G et al 2016 Phys. Plasmas 23 033302
    [8]
    Hendron J M et al 1997 J. Appl. Phys. 81 2131
    [9]
    Cao S Q et al 2018 Phys. Plasmas 25 063302
    [10]
    Evans D E and Katzenstein J 1969 Rep. Prog. Phys. 32 207
    [11]
    Rozmus W et al 2000 Astrophys. J. Suppl. Ser. 127 459
    [12]
    Mendys A et al 2014 Spectrochim. Acta Part B 96 61
    [13]
    Peacock N J et al 1969 Nature 224 488
    [14]
    Wang Y et al 2017 Plasma Sci. Technol. 19 115403
    [15]
    Glenzer S H et al 1999 Phys. Plasmas 6 2117
    [16]
    Delserieys A et al 2008 Appl. Phys. Lett. 92 011502
    [17]
    Delserieys A et al 2009 J. Appl. Phys. 106 083304
    [18]
    Nedanovska E et al 2011 Appl. Phys. Lett. 99 261504
    [19]
    Nedanovska E et al 2012 Laser Part. Beams 30 259
    [20]
    Dzierżȩga K et al 2010 J. Phys.: Conf. Ser. 227 012029
    [21]
    Mendys A et al 2011 Spectrochim. Acta Part B 66 691
    [22]
    Zhang H T et al 2019 Spectrochim. Acta Part B 157 6
    [23]
    Murphy A B, Aubreton J and Elchinger M F 2003 AIP Conf.Proc. 669 757
    [24]
    Murphy A B 2004 Phys. Rev. E 69 016408
    [25]
    Dzierżęga K, Mendys A and Pokrzywka B 2014 Spectrochim.Acta Part B 98 76
  • Related Articles

    [1]Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [4]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [5]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [6]WANG Xifeng (王喜凤), SONG Yuanhong (宋远红), ZHAO Shuxia (赵书霞), DAI Zhongling (戴忠玲), WANG Younian (王友年). Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge[J]. Plasma Science and Technology, 2016, 18(4): 394-399. DOI: 10.1088/1009-0630/18/4/11
    [7]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [10]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02

Catalog

    Article views (178) PDF downloads (74) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return