Advanced Search+
Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
Citation: Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f

Geodesic acoustic mode in a reduced two-fluid model

Funds: This work was supported by the China National Magnetic Confinement Fusion Energy Research Project under Grant No. 2015GB120005, and National Natural Science Foundation of China No. 11275260.
More Information
  • Received Date: August 09, 2017
  • A reduced two-fluid model is constructed to investigate the geodesic acoustic mode (GAM). The ion dynamics is sufficiently considered by including an anisotropic pressure tensor and inhibited heat flux vector, whose evolutions are determined by equations derived from the 16-momentum model. Electrons are supposed to obey the Boltzmann distribution responding to the electrostatic oscillation with near ion acoustic velocity. In the large safety factor limit, the GAM frequency is identical with the kinetic one to the order of 1/ q2 when zeroing the anisotropy. For general anisotropy, the reduced two-fluid model generates the frequency agreeing well with the kinetic result with arbitrary electron temperature. The present simplified fluid model will be of great use and interest for young researchers and students devoted to plasma physics.
  • [1]
    Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
    [2]
    Diamond P H et al 2005 Plasma Phys. Control. Fusion 47 R35
    [3]
    Itoh K, Hallatschek K and Itoh S I 2005 Plasma Phys. Control. Fusion 47 451
    [4]
    Wahlberg C 2008 Phys. Rev. Lett. 101 115003
    [5]
    Qiu Z, Chen L and Zonca F 2014 Nucl. Fusion 54 033010
    [6]
    Ren H and Cao J 2015 Phys. Plasmas 22 062501
    [7]
    Lebedev V B et al 1996 Phys. Plasmas 3 3023
    [8]
    Sugama H and Watanabe T H 2006 J. Plasma Physics 72 825
    [9]
    Smolyakov A I et al 2008 Phys. Lett. A 372 6750
    [10]
    Kolesnichenko Y I, Lepiavko B S and Yakovenko Y V 2012 Plasma Phys. Control. Fusion 54 105001
    [11]
    Sgalla R J F et al 2013 Phys. Letts. A 377 303
    [12]
    Sgalla R J F 2015 Phys. Plasmas 22 022502
    [13]
    Storelli A et al 2015 Phys. Plasmas 22 062508
    [14]
    Singh R and Gürcan ? D 2017 Phys. Plasmas 24 022507
    [15]
    Ren H 2014 Phys. Plasmas 21 044505
    [16]
    Ren H 2015 Phys. Plasmas 22 102505
    [17]
    Dorf M A et al 2013 Nucl. Fusion 53 063015
    [18]
    Ramos J J 2003 Phys. Plasmas 10 3601
    [19]
    Ramos J J 2005 Phys. Plasmas 12 052102
    [20]
    Ren H 2014 Phys. Plasmas 21 064502
    [21]
    Gao Z et al 2008 Phys. Plasmas 15 072511
    [22]
    Ren H 2015 Phys. Plasmas 22 072502
    [23]
    Fasoli A et al 2007 Nucl. Fusion 47 S264
  • Related Articles

    [1]Rajesh Prakash GURAGAIN, Hom Bahadur BANIYA, Santosh DHUNGANA, Ganesh Kuwar CHHETRI, Binita SEDHAI, Niroj BASNET, Aavash SHAKYA, Bishnu Prasad PANDEY, Suman Prakash PRADHAN, Ujjwal Man JOSHI, Deepak Prasad SUBEDI. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus)[J]. Plasma Science and Technology, 2022, 24(1): 015502. DOI: 10.1088/2058-6272/ac3476
    [2]M M RASHID, Mamunur RASHID, M M HASAN, M R TALUKDER. Rice plant growth and yield: foliar application of plasma activated water[J]. Plasma Science and Technology, 2021, 23(7): 75503-075503. DOI: 10.1088/2058-6272/abf549
    [3]Sahar A FADHLALMAWLA, Abdel-Aleam H MOHAMED, Jamal Q M ALMARASHI, Tahar BOUTRAA. The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum)[J]. Plasma Science and Technology, 2019, 21(10): 105503. DOI: 10.1088/2058-6272/ab2a3e
    [4]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [5]Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27
    [6]LI Ling (李玲), LI Jiangang (李建刚), SHEN Minchong (申民翀), HOU Jinfeng (侯金凤), SHAO Hanliang (邵汉良), DONG Yuanhua (董元华), JIANG Jiafeng (蒋佳峰). Improving Seed Germination and Peanut Yields by Cold Plasma Treatment[J]. Plasma Science and Technology, 2016, 18(10): 1027-1033. DOI: 10.1088/1009-0630/18/10/10
    [7]TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16
    [8]DONG Xiaoyu(董晓宇), YUAN Yulian(袁玉莲), TANG Qian(唐乾), DOU Shaohua(窦少华), DI Lanbo(底兰波), ZHANG Xiuling(张秀玲). Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae[J]. Plasma Science and Technology, 2014, 16(1): 73-78. DOI: 10.1088/1009-0630/16/1/16
    [9]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [10]LI Xiaoling (李晓玲), WAN Baonian (万宝年), GUO Zhirong (郭智荣), ZHONG Guoqiang (钟国强), HU Liqun (胡立群), LIN Shiyao (林士耀), ZHANG Xinjun (张新军), DING Siye (丁斯晔), LU Bo (吕波). Neutron Yields Based on Transport Calculation in EAST ICRF Minority Heating Plasmas[J]. Plasma Science and Technology, 2013, 15(5): 411-416. DOI: 10.1088/1009-0630/15/5/03

Catalog

    Article views (283) PDF downloads (499) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return