Advanced Search+
Sahar A FADHLALMAWLA, Abdel-Aleam H MOHAMED, Jamal Q M ALMARASHI, Tahar BOUTRAA. The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum)[J]. Plasma Science and Technology, 2019, 21(10): 105503. DOI: 10.1088/2058-6272/ab2a3e
Citation: Sahar A FADHLALMAWLA, Abdel-Aleam H MOHAMED, Jamal Q M ALMARASHI, Tahar BOUTRAA. The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum)[J]. Plasma Science and Technology, 2019, 21(10): 105503. DOI: 10.1088/2058-6272/ab2a3e

The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum)

More Information
  • Received Date: April 18, 2019
  • Revised Date: June 15, 2019
  • Accepted Date: June 16, 2019
  • The effects of cold atmospheric-pressure plasma jet (CAPPJ) were investigated on germination and early seedling growth of fenugreek (Trigonella foenum-graecum L) seeds. A two-electrode argon CAPPJ system with and without an additional grounded electrode
    [accelerating grounded (AG) electrode] was used at different exposure times. After 16 h of observation, the germination rates increased by 4 and 7 times, without and with using an AG electrode, respectively, for 1 min of plasma exposure. An increase in shoot fresh weight was observed, especially at 10 min exposure time. A high dry weight of root and shoot at 1 min-AG exposure time was observed. The root:shoot ratio was lower in plasma-treated seedlings, compared with the control plants. The study found that the O-radical emission line (777.4 nm) enhanced 5 times, due to the presence of an AG electrode, which increased the axial electric field and led to the formation of more streamers. The three stated effects (O-radicals, enhancement of the electric field and streamers) could be the cause for the stimulation of seed germination and seedling growth parameters when using the CAPPJ. The scanning electron microscope images showed the etching of the seed surface layers, which was more pronounced when an AG electrode was applied. The results of the current study indicate that the germination rates increased due to the increase of O-radical concentration and the etching of the seed surfaces.
  • [1]
    Lu X et al 2016 Phys. Rep. 630 1
    [2]
    Randeniya L K and de Groot G J J B 2015 Plasma Process.Polym. 12 608
    [3]
    Zahoranová A et al 2018 Plasma Chem. Plasma Process.38 969
    [4]
    Filatova I et al 2014 J. Appl. Spectrosc. 81 250
    [5]
    Sera B et al 2010 IEEE Trans. Plasma Sci. 38 2963
    [6]
    Feng J K et al 2018 Plasma Sci. Technol. 20 035505
    [7]
    Judée T et al 2018 Water Res. 133 47
    [8]
    Măgureanu M et al 2018 Plasma Chem. Plasma Process.38 989
    [9]
    Pizá M C P et al 2018 Innov. Food Sci. Emerg. Technol. 49 82
    [10]
    Cen Y P and Bornman J F 1990 J. Exp. Bot. 41 1489
    [11]
    Stapleton A E 1992 Plant Cell 4 1353
    [12]
    Hollósy F 2002 Micron 33 179
    [13]
    Hectors K et al 2010 J. Exp. Bot. 61 4339
    [14]
    Grzegorzewski F et al 2010 Food Chem. 122 1145
    [15]
    Bormashenko E et al 2015 J. Exp. Bot. 66 4013
    [16]
    Fina J et al 2017 Plant Physiol. 174 1110
    [17]
    Volin J C et al 2000 Crop Sci. 40 1706
    [18]
    Jiang J F et al 2018 Plasma Sci. Technol. 20 044007
    [19]
    Bormashenko E et al 2012 Sci. Rep. 2 741
    [20]
    Wani S A and Kumar P 2018 J. Saudi Soc. Agric. Sci. 17 97
    [21]
    Dixit P P et al 2010 Fitoterapia 81 403
    [22]
    Xue W L et al 2011 Nutr. Res. 31 555
    [23]
    Moradi Kor N and Moradi K 2013 Glob. J. Med. Plant Res. 1 199
    [24]
    Živković S et al 2004 Seed Sci. Technol. 32 693
    [25]
    Lynikiene S, Pozeliene A and Rutkauskas G 2006 Int.Agrophys. 20 195
    [26]
    Stolárik T et al 2015 Plasma Chem. Plasma Process. 35,659
    [27]
    Li L et al 2015 Sci. Rep. 5 13033
    [28]
    Ji S H et al 2016 Arch. Biochem. Biophys. 605 117
    [29]
    Jiang J F et al 2014 Plasma Sci. Technol. 16 54
    [30]
    Safari N et al 2017 Plasma Sci. Technol. 19 055501
    [31]
    Ling L et al 2014 Sci. Rep. 4 5859
    [32]
    Los A et al 2018 Food Res. Int. 106 509
    [33]
    Štěpánová V et al 2017 Plasma Process. Polym. 15 1700076
    [34]
    Zhou R et al 2019 Innov. Food Sci. Emerg. Technol. 53 36
    [35]
    Seo Y S et al 2010 IEEE Trans. Plasma Sci. 38 2954
    [36]
    Walsh J L and Kong M G 2008 Appl. Phys. Lett. 93 111501
    [37]
    Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 075201
    [38]
    Matra K 2016 Proc. Comput. Sci. 86 132
    [39]
    Yin M Q et al 2005 Plasma Sci. Technol. 7 3143
    [40]
    Šerá B et al 2009 Plasma Sci. Technol. 11 750
    [41]
    Tong J Y et al 2014 Plasma Sci. Technol. 16 260
    [42]
    Bai N et al 2011 Plasma Process. Polym. 8 424
    [43]
    Gomes M P and Garcia Q S 2013 Biologia 68 351
    [44]
    Kumar S P J et al 2015 Ann. Bot. 116 663
    [45]
    Dinu M et al 2013 Farmacia 61 1069
    [46]
    Turki Z, El-Shayeb F and Abozeid A 2013 Int. J. Sci. Res.3 940
    [47]
    Fan X T et al 2017 Radiat. Phys. Chem. 130 306
    [48]
    Alves Junior C et al 2016 Sci. Rep. 6 33722
    [49]
    Sookwong P et al 2014 J. Food Nutr. Res. 2 946
    [50]
    Lotfy K, Al-Harbi N A and El-Raheem H A 2019 Plasma Chem. Plasma Process. 39 897
    [51]
    Dhayal M, Lee S Y and Park S U 2006 Vacuum 80 499
  • Related Articles

    [1]Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd
    [2]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Density disturbance of small-scale field- aligned irregularities in the ionosphere heating experiments[J]. Plasma Science and Technology, 2018, 20(12): 125001. DOI: 10.1088/2058-6272/aadd45
    [3]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Farideh HONARY, Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Threshold of parametric instability in the ionospheric heating experiments[J]. Plasma Science and Technology, 2018, 20(11): 115301. DOI: 10.1088/2058-6272/aac71d
    [4]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [5]Manman XU (徐曼曼), Yuntao SONG (宋云涛), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Guang LIU (刘广), Zhen PENG (彭振). Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST[J]. Plasma Science and Technology, 2017, 19(11): 115601. DOI: 10.1088/2058-6272/aa8167
    [6]Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db
    [7]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [8]SUN Jicheng(孙继承), GAO Xinliang(高新亮), LU Quanming(陆全明), WANG Shui(王水). The Efficiency of Ion Stochastic Heating by a Monochromatic Obliquely Propagating Low-Frequency Alfven Wave[J]. Plasma Science and Technology, 2014, 16(10): 919-923. DOI: 10.1088/1009-0630/16/10/04
    [9]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [10]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
  • Cited by

    Periodical cited type(2)

    1. Zhao, H.-S., Feng, J., Xu, Z.-W. et al. Enhancement of ionospheric heating effect by chemical release. Scientific Reports, 2024, 14(1): 13234. DOI:10.1038/s41598-024-64011-w
    2. Lv, L., Ma, G., Che, H. et al. Study on Multi-Mode Propagation Characteristics of High-Power High-Frequency Heating Waves. 2024. DOI:10.1109/ISAPE62431.2024.10840662

    Other cited types(0)

Catalog

    Article views (162) PDF downloads (330) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return