Advanced Search+
Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd
Citation: Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd

Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations

Funds: This work is supported by the Innovation Fund of China Electronics Technology Group Corporation (No. KJ1602004).
More Information
  • Received Date: September 17, 2018
  • It is now well known that amplitude modulated (AM) high frequency (HF) radio wave transmissions into the ionosphere can be used to generate very/extremely low frequency (VLF/ ELF) radio waves using the so-called ‘electrojet antenna’. Duty cycle and heating frequency are analyzed and discussed with the lower-ionosphere modulated heating model, so as to improve the radiation efficiency of VLF/ELF waves in AM ionospheric heating experiments. Based on numerical simulation, the ranges of parametric selectivity in optimal duty cycle and heating frequency ( fHF) are derived. The International Reference Ionosphere 2015 (IRI-2015) model and two-parameter model are used to predict background electron density profiles, and optimized ranges of duty cycle for different density profiles are analyzed and compared. The influences of wave polarizations on optimal duty cycle are also discussed. It is shown that intensity of the VLF/ELF equivalent radiation source ( M ) firstly rises and then falls with the increase of duty cycle. When using the IRI model, M peaks at a duty cycle of 50%, optimally ranging from 40% −70%. For the two-parameter model case, an optimal duty cycle is 40% and the optimized ranges vary from 30%−60%. Heating with an X-mode polarization is more efficient than with the O-mode case in VLF/ELF wave generation. Nevertheless, an optimal duty cycle is almost independent of HF wave polarizations. To obtain better VLF/ELF generation, optional fHF may be 0.8−0.9 times of foE for the O-mode heating and 0.75−0.85 times for the X-mode polarization case. Finally, the variations of these two parameters in different latitudes are discussed.
  • [1]
    Willis S W and Davis J R 1973 J. Geophys. Res. 78 5710
    [2]
    Getmantsev G G et al 1974 ZhETF Pis. Red. 20 229
    [3]
    Stubbe P et al 1982 J. Atmos. Terr. Phys. 44 1123
    [4]
    Barr R, Stubbe P and Kopka H 1991 Radio Sci. 26 871
    [5]
    Kuo S P 1993 Radio Sci. 28 1019
    [6]
    Barr R and Stubbe P 1997 J. Atmos. Sol. Terr. Phys. 59 2265
    [7]
    Barr R, Stubbe P and Rietveld M T 1999 Ann. Geophys. 17 759
    [8]
    Cohen M B, Golkowski M and Inan U S 2008 Geophys. Res. Lett. 35 12
    [9]
    Moore R C et al 2007 J. Geophys. Res. 112 A05309
    [10]
    Cohen M B et al 2010 J. Geophys. Res. 115 A02302
    [11]
    Papadopoulos K et al 2003 Plasma Phys. Rep. 29 561
    [12]
    Moore R C, Inan U S and Bell T F 2006 Geophys. Res. Lett. 33 L12106
    [13]
    Jin G et al 2011 J. Geophys. Res. 116 A07310
    [14]
    Jin G et al 2012 J. Geophys. Res. 117 A11315
    [15]
    Cohen M B et al 2012 J. Geophys. Res. 117 A05327
    [16]
    Go?kowski M, Cohen M B and Moore R C 2013 J. Geophys. Res. 118 2350
    [17]
    Papadopoulos K et al 1990 Radio Sci. 25 1311
    [18]
    Cohen M B, Inan U S and Go?kowski M 2008 Geophys. Res. Lett. 35 62
    [19]
    Fujimaru S 2014 Optimization of beam painting for ELF/VLF wave generation at HAARP using time-of-arrival analysis PhD Thesis University of Florida, Florida, USA
    [20]
    Milikh G M and Papadopoulos K 2007 Geophys. Res. Lett. 34 L20804
    [21]
    Cohen M B and Go?kowski M 2013 J. Geophys. Res. 118 6597
    [22]
    Moore R C et al 2013 Phys. Rev. Lett. 111 235007
    [23]
    Espinosa S A and Dougherty M K 2000 Geophys. Res. Lett. 27 2785
    [24]
    Milikh G M et al 1999 Radiophys. Quantum Electr. 42 639
    [25]
    Hao S J et al 2013 Ann. Geophys. 56 A0566
    [26]
    Stubbe P, Kopka H and Dowden R L 1981 J. Geophys. Res. 86 9073
    [27]
    Tomko A A, Ferraro A J and Lee H S 1980 Radio Sci. 15 675
    [28]
    Rietveld M T, Kopka H and Stubbe P 1986 J. Atmos. Terr. Phys. 48 311
    [29]
    Moore R C 2007 ELF/VLF wave generation by modulated HF heating of the auroral electrojet PhD Thesis Stanford University, Calif, USA
    [30]
    Wait J R and Spies K P 1964 Characteristics of the Earthionosphere waveguide for VLF radio waves Tech. Rep. 300 Boulder Colorado: National Bureau of Standards
    [31]
    Thomson N R, Rodger C J and Clilverd M A 2011 J. Geophys. Res. 116 A11305
    [32]
    Thomson N R, Clilverd M A and McRae W M 2007 J. Geophys. Res. 112 A07304
    [33]
    Barr R and Stubbe P 1984 Radio Sci. 19 1111 8
  • Related Articles

    [1]Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5
    [2]Rui LI, Qihan WANG, Fucheng LIU, Kuangya GAO, Xiaohan HOU, Mengmeng JIA, Qing LI, Weili FAN. Reconfigurable (4, 62) and (4, 82) Archimedean plasma photonic crystals in dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(6): 064008. DOI: 10.1088/2058-6272/ad341f
    [3]Liting GUO, Yuyang PAN, Guanglin YU, Zhaoyang WANG, Kuangya GAO, Weili FAN, Lifang DONG. Controllable and tunable plasma photonic crystals through a combination of photonic crystal and dielectric barrier discharge patterns[J]. Plasma Science and Technology, 2023, 25(8): 085501. DOI: 10.1088/2058-6272/acb52b
    [4]Yu MA(马宇), Hao ZHANG(张浩), Haifeng ZHANG(章海锋), Ting LIU(刘婷), Wenyu LI(李文煜). Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence[J]. Plasma Science and Technology, 2019, 21(1): 15001-015001. DOI: 10.1088/2058-6272/aade85
    [5]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [6]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [7]GUO Bin (郭斌), PENG Li (彭莉), QIU Xiaoming (邱孝明). Tunability of One-Dimensional Plasma Photonic Crystals with an External Magnetic Field[J]. Plasma Science and Technology, 2013, 15(7): 609-613. DOI: 10.1088/1009-0630/15/7/01
    [8]S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Properties of Ternary One Dimensional Plasma Photomic Crystals for an Obliquely Incident Electromagnetic Wave Considering the E®ect of Collisions in Plasma Layers[J]. Plasma Science and Technology, 2012, 14(12): 1084-1090. DOI: 10.1088/1009-0630/14/12/09
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.

Catalog

    Article views (194) PDF downloads (189) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return