Advanced Search+
Libin LV (吕立斌), Zhensen WU (吴振森), Qingliang LI (李清亮), Shuji HAO (郝书吉), Jian DING (丁建), Guanglin MA (马广林), Jing CHEN (陈靓). Heating frequency optimization for artificial field-aligned scattering[J]. Plasma Science and Technology, 2019, 21(9): 95301-095301. DOI: 10.1088/2058-6272/ab1d46
Citation: Libin LV (吕立斌), Zhensen WU (吴振森), Qingliang LI (李清亮), Shuji HAO (郝书吉), Jian DING (丁建), Guanglin MA (马广林), Jing CHEN (陈靓). Heating frequency optimization for artificial field-aligned scattering[J]. Plasma Science and Technology, 2019, 21(9): 95301-095301. DOI: 10.1088/2058-6272/ab1d46

Heating frequency optimization for artificial field-aligned scattering

Funds: This work was supported by the Innovation Foundation of the China Electronics Technology Group Corporation (No. KJ1602004).
More Information
  • Received Date: December 17, 2018
  • Revised Date: April 09, 2019
  • Accepted Date: April 27, 2019
  • In this study, we present a simulation study of artificial field-aligned irregularities (AFAI) to calculate the scattering coefficient considering a Gaussian autocorrelation function for the wave number spectrum of the density fluctuation. By analyzing variations in the scattering coefficient under different ionospheric backgrounds, the optimal range of the heating frequency was found, which is about 0.9–1 times the critical frequency of the F2 layer. This is especially noticeable as when the heating frequency varies from 0.5 times to 0.9 times of the critical frequency, the scattering coefficient increases by 6.8–16.2 dB. These results should be useful for optimizing the heating frequency in the future artificial field-aligned scattering (AFAS) transmission applications at middle and low latitudes.
  • [1]
    Gurevich A V 2007 Phys.–Usp. 50 1091
    [2]
    Blagoveshchenskaya N F et al 2018 Cosmic Res. 56 11
    [3]
    Frolov V L et al 1997 J. Atmos. Solar-Terr. Phys. 59 2317
    [4]
    Galushko V G et al 2013 Radio Sci. 48 180
    [5]
    Vas’kov V V and Ryabova N A 2007 Radiophys. Quantum Electron. 50 167
    [6]
    Bryers C J et al 2013 J. Geophys. Res. Space Phys. 118 7472
    [7]
    Guzdar P N et al 1996 J. Geophys. Res. Space Phys. 101 2453
    [8]
    Kuo S P, Cheo B R and Lee M C 1983 J. Geophys. Res. Space Phys. 88 417
    [9]
    Perkins F W and Kaw P K 1971 J. Geophys. Res. 76 282
    [10]
    Wang X et al 2016 J. Geophys. Res. Space Phys. 121 3578
    [11]
    Wang X et al 2018 Plasma Sci. Technol. 20 115301
    [12]
    Fu H Y et al 2018 Geophys. Res. Lett. 45 9363
    [13]
    Zhang J, Fu H Y and Scales W 2018 IEEE Trans. Plasma Sci.46 2146
    [14]
    Lü L B et al 2017 Acta Phys. Sin. 66 059401 (in Chinese)
    [15]
    Fialer P A 1974 Radio Sci. 9 923
    [16]
    Carroll J C, Violette E J and Utlaut W F 1974 Radio Sci. 9 889
    [17]
    Thome G D and Blood D W 1974 Radio Sci. 9 917
    [18]
    Barry G H 1974 Radio Sci. 9 1025
    [19]
    Andreeva E S et al 2016 Radio Sci. 51 638
    [20]
    Borisova T D et al 2017 Radiophys. Quantum Electron. 60 273
    [21]
    Sheerin J P and Cohen M B 2015 AIP Conf. Proc. 1689 020003
    [22]
    Booker H G 1956 J. Atmos. Terr. Phys. 8 204
    [23]
    Rao P B and Thome G D 1974 Radio Sci. 9 987
    [24]
    Rawer K 1993 Wave Propagation in the Ionosphere (Berlin: Springer)
  • Related Articles

    [1]Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd
    [2]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Density disturbance of small-scale field- aligned irregularities in the ionosphere heating experiments[J]. Plasma Science and Technology, 2018, 20(12): 125001. DOI: 10.1088/2058-6272/aadd45
    [3]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Farideh HONARY, Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Threshold of parametric instability in the ionospheric heating experiments[J]. Plasma Science and Technology, 2018, 20(11): 115301. DOI: 10.1088/2058-6272/aac71d
    [4]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [5]Manman XU (徐曼曼), Yuntao SONG (宋云涛), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Guang LIU (刘广), Zhen PENG (彭振). Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST[J]. Plasma Science and Technology, 2017, 19(11): 115601. DOI: 10.1088/2058-6272/aa8167
    [6]Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db
    [7]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [8]SUN Jicheng(孙继承), GAO Xinliang(高新亮), LU Quanming(陆全明), WANG Shui(王水). The Efficiency of Ion Stochastic Heating by a Monochromatic Obliquely Propagating Low-Frequency Alfven Wave[J]. Plasma Science and Technology, 2014, 16(10): 919-923. DOI: 10.1088/1009-0630/16/10/04
    [9]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [10]Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02
  • Cited by

    Periodical cited type(2)

    1. Zhao, H.-S., Feng, J., Xu, Z.-W. et al. Enhancement of ionospheric heating effect by chemical release. Scientific Reports, 2024, 14(1): 13234. DOI:10.1038/s41598-024-64011-w
    2. Lv, L., Ma, G., Che, H. et al. Study on Multi-Mode Propagation Characteristics of High-Power High-Frequency Heating Waves. 2024. DOI:10.1109/ISAPE62431.2024.10840662

    Other cited types(0)

Catalog

    Article views (197) PDF downloads (165) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return