Advanced Search+
Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
Citation: Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51

On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model

Funds: This work was supported by National Natural Science Foundation of China (Grant Nos. 11375107 and 11675095), and the Fundamental Research Funds of Shandong University (Grant No. 2015JC050).
More Information
  • Pulse modulation provides a new way to tailor the electron density, electron energy and gas temperature in atmospheric radio-frequency (rf) discharges. In this paper, by increasing the rf frequency to several hundreds of MHz, or even much higher to the range of GHz, a very strong peak current in the first period (PCFP) with much larger electron energy can be formed during the power-on phase, which is not observed in the common pulse modulation discharges at a rf frequency of 13.56 MHz. The PIC-MCC model is explored to unveil the generation mechanism of PCFP, and based on the simulation data a larger voltage increasing rate over a quarter of a period and the distribution of electron density just before the power-on phase are believed to play key roles; the PCFP is usually produced in the microplasma regime driven by the pulsed power supply. The effects of duty cycle and pulse modulation frequency on the evolution of PCFP are also discussed from the computational data. Therefore, the duty cycle and pulse modulation frequency can be used to optimize the generation of PCFP and high-energy electrons.
  • Related Articles

    [1]Xucheng WANG, Shuhan GAO, Yuantao ZHANG. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium–oxygen admixtures[J]. Plasma Science and Technology, 2022, 24(8): 085401. DOI: 10.1088/2058-6272/ac67bf
    [2]Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82
    [3]Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd
    [4]ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02
    [5]SUN Min (孙敏), YANG Bo (杨波), PENG Tianxiang (彭天祥), LEI Mingkai (雷明凯). Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control[J]. Plasma Science and Technology, 2016, 18(6): 680-685. DOI: 10.1088/1009-0630/18/6/16
    [6]WANG Xifeng (王喜凤), SONG Yuanhong (宋远红), ZHAO Shuxia (赵书霞), DAI Zhongling (戴忠玲), WANG Younian (王友年). Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge[J]. Plasma Science and Technology, 2016, 18(4): 394-399. DOI: 10.1088/1009-0630/18/4/11
    [7]LI Feng(李峰), GAO Chao(高超), ZHENG Borui(郑博睿), WANG Yushuai(王玉帅). Research on the Peristaltic Flow Acceleration Performance of Asynchronous and Duty Cycle Pulsed DBD Plasma Actuation[J]. Plasma Science and Technology, 2014, 16(9): 861-866. DOI: 10.1088/1009-0630/16/9/10
    [8]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [9]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05
    [10]ZHENG Borui (郑博睿), GAO Chao(高超), LI Yibin(李一滨), LIU Feng(刘峰), LUO Shijun(罗时钧. Flow Control over a Conical Forebody by Duty-Cycle Actuations[J]. Plasma Science and Technology, 2012, 14(1): 58-63. DOI: 10.1088/1009-0630/14/1/13

Catalog

    Article views (262) PDF downloads (625) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return