Advanced Search+
YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
Citation: YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07

Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics

Funds: supported by National Natural Science Foundation of China (Nos. 11335004 and 11375040) and the Important National Science and Technology Specific Project (No. 2011ZX02403-001)
More Information
  • Received Date: September 11, 2012
  • A one-dimensional fluid model is adopted to simulate the characteristics of N 2, O 2, and N 2 /O 2 dual-frequency (DF) capacitively coupled plasmas (CCPs) under typical conditions in PECVD technologies. Not only the ground, the excited states but also the vibration levels of the main species are considered. The study focuses on the influence of external parameters such as matching of the high-frequency (HF) and low-frequency (LF), HF and LF of the voltage sources, as well as discharge pressures, on physical characteristics of discharges. The results show that the decoupling of the two sources is possible by increasing the applied HF, the electron density and ion flux are determined only by the HF of the voltage source, whereas the LF has a little influence on the plasma characteristics. In addition, the matching of frequency affects the characteristics of discharges to some extent. Furthermore, the pressure is a main external parameter affecting the characteristics of discharges, and a small amount of oxygen in N 2 plasma can efficiently increase N + 2 ion flux incident onto the electrode and the density of N atom.
  • 1 Gordiets B F, Ferreira C M, Guerra V L, et al. 1995,IEEE Transactions on Plasma Science, 23: 750;
    2 Ionin A A, Kochetov I V, Napartovich A P, et al. 2007,J. Phys. D: Appl. Phys., 40: R25;
    3 Kutasi K, Loureiro J. 2007, J. Phys. D: Appl. Phys.,40: 5612;
    4 Kozlov K V, Brandenburg R, Wagner H-E, et al. 2005,J. Phys. D: Appl. Phys., 38: 518;
    5 Bi Z H, Dai Z L, Xu X, et al. 2009, Phys. Plasmas, 16:043510;
    6 Lieberman M A, Lichtenberg A J. 2005, Principles of Plasma Discharges and Material Processing. Wiley,New York, p.373;
    7 Hsu C C, Nierode M A, Coburn J W, et al. 2006, J.Phys. D: Appl. Phys., 39: 3272;
    8 Itikawa Y. 2009, J. Phys. Chem. Ref. Data, 38: 1;
    9 Gudmundsson J T. 2004, A critical review of the reac-tion set for a low pressure oxygen processing discharge.University of Iceland, Science Institute, Iceland RH-17-2004;
    10 Gudmundsson J T. 2005, Electron excitation rate co-effcients for the nitrogen discharge. Science Institute,University of Iceland, Iceland RH-09-2005;
    11 Hagelaar G, Pitchford L. 2005, Plasma Sources Sci.Technol., 14: 722;
    12 Guerra V, Sa P A. 2004, J. Loureiro, Eur. Phys. J.Appl. Phys., 28: 125;
    13 Cosby P C. 1993, J. Chem. Phys., 98: 9544;
    14 McConkey J W, Malone C P, Johnson P V, et al. 2008,Physics Reports, 466: 1;
    15 Rapp D, Briglia D D. 1965, J. Chem. Phys., 43: 1840;
    16 Bukowski J D, Graves D B, Vitello P. 1996, J. Appl.Phys., 80: 2614;
    17 Knott W J, Proch D, Kompa K L. 1999, J. Chem.Phys., 110: 9428;
    18 Sinnott G, Golden D E. 1968, Phys. Rev., 170: 270;
    19 Hammond E P, Mahesh K, Moin P. 2002, J. Comput.Phys., 176: 402;
    20 Bleecker K D, Bogaerts A, Gijbels R, et al. 2004, Phys.Rev. E, 69: 056409;
    21 Wan J, Liu S, Yang Y, et al. 1994, Molecular Theory and the Nature of Fluid. Harbin Engineering Univer-sity Press, Harbin, p.468;
    22 Gudmundsson J T, Kouznetsov I G, Patel K K, et al.2001, J. Phys. D: Appl. Phys., 34: 1100;
    23 Boris J P, Book D L. 1973, J. Comput. Phys., 11: 38;
    24 Zhong X. 1996, J. Comput. Phys., 128: 19;
    25 Hammond E P, Mahesh K, Moin P A. 2002, J. Com-put. Phys., 176: 402
  • Related Articles

    [1]Jianyi CHEN (陈建义), Chengxun YUAN (袁承勋), Xiudong SUN (孙秀冬), Lei HUO (霍雷). Transmissivity of electromagnetic wave propagating in magnetized plasma sheath using variational method[J]. Plasma Science and Technology, 2019, 21(12): 125001. DOI: 10.1088/2058-6272/ab4199
    [2]Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18
    [3]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [4]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [5]ZHANG Lin (张林), OUYANG Jiting (欧阳吉庭). Microwaves Scattering by Underdense Inhomogeneous Plasma Column[J]. Plasma Science and Technology, 2016, 18(3): 266-272. DOI: 10.1088/1009-0630/18/3/09
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [7]Takashi MINAMI, Shohei ARAI, Naoki KENMOCH, Hiroaki YASHIRO, Chihiro TAKAHASHI, Shinji KOBAYASHI, Tohru MIZUUCHI, Shinsuke OHSHIMA, Satoshi YAMAMOTO, Hiroyuki OKADA, Kazunobu NAGASAKI, et al. Present Status of the Nd:YAG Thomson Scattering System Development for Time Evolution Measurement of Plasma Profile on Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 240-243. DOI: 10.1088/1009-0630/15/3/10
    [8]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
    [9]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
    [10]Kazumichi NARIHARA, Hiroshi HAYASHI. Asphericalizing the Light Collection Mirror for the 200-Point Thomson Scattering Diagnostic Installed on the Large Helical Device[J]. Plasma Science and Technology, 2011, 13(4): 415-419.

Catalog

    Article views (199) PDF downloads (1287) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return