Advanced Search+
Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
Citation: Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5

Influence of the gassing materials on the dielectric properties of air

Funds: This work was supported by the National Key Basic Research Program of China (973 Program) 2015CB251002, National Natural Science Foundation of China under Grant 51521065, 51577145, the Fundamental Research Funds for the Central Universities, and Shaanxi Province Natural Science Foundation 2013JM-7010.
More Information
  • Received Date: October 17, 2016
  • Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H2O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.
  • [1]
    Qian Y et al 2006 Plasma Sci. Technol. 8 680
    [2]
    Chen D G, Li Z P and Liu H W 2004 IEICE Trans. Electron. 87 1336
    [3]
    Shea J J 2001 IEEE Trans. Compon. Packag. Technol. 24 342
    [4]
    Tsukima M et al 2002 IEEJ Trans. Power Energy 122 969
    [5]
    Doméjean E et al 1997 J. Phys. D: Appl. Phys. 30 2132
    [6]
    Tanaka Y 2004 J. Phys. D: Appl. Phys. 37 851
    [7]
    Seeger M et al 2005 J. Phys. D: Appl. Phys. 38 1795
    [8]
    Wang W Z et al 2012 Phys. Plasmas 19 083506
    [9]
    Coufal O, Sezemsky P and ?ivny O 2005 J. Phys. D: Appl. Phys. 38 1265
    [10]
    Girard R et al 1999 J. Phys. D: Appl. Phys. 32 2890
    [11]
    Morgan database, www.lxcat.net, retrieved on 17 April 2016
    [12]
    Itikawa Y 2005 J. Phys. Chem. Ref. Data 34 1
    [13]
    QUANTEMOL database, www.lxcat.net, retrieved on 17 April 2016
    [14]
    Capitelli M and Bardsley J N 1990 Nonequilibrium Processes in Partially Ionized Gases (New York: Plenum)
    [15]
    Pitchford L C et al 1987 Swarm Studies and Inelastic Electron–Molecule Collisions (New York: Springer)
    [16]
    Fresnet F et al 2002 J. Phys. D: Appl. Phys. 35 882
    [17]
    Tanaka Y 2005 IEEE Trans. Dielectr. Electric. Insul. 12 504
    [18]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
    [19]
    Sun H et al 2016 Plasma Sci. Technol. 18 217
    [20]
    Price D A, Lucas J and Moruzzi J L 1972 J. Phys. D: Appl. Phys. 5 1249
    [21]
    Lucas J, Price D A and Moruzzi J L 1973 J. Phys. D: Appl. Phys. 6 1503
    [22]
    Lawton S A and Phelps A V 1978 J. Chem. Phys. 69 1055
    [23]
    Gallagher J W et al 1983 J. Phys. Chem. Ref. Data 12 109
    [24]
    Prasad A N and Craggs J D 1960 Proc. Phys. Soc. 76 223
    [25]
    Ryzko H 1965 Proc. Phys. Soc. 85 1283
    [26]
    Risbud A V and Naidu M S 1979 J. Phys. Colloques 40 C7–77
    [27]
    Crompton R W, Rees J A and Jory R L 1965 Aust. J. Phys. 18 541
    [28]
    Rothardt L et al 1981 J. Phys. D: Appl. Phys. 14 715
    [29]
    Stoller P C et al 2013 IEEE Trans. Plasma Sci. 41 2359
  • Related Articles

    [1]Chi-Shung YIP (叶孜崇), Wei ZHANG (张炜), Guosheng XU (徐国盛), Noah HERSHKOWITZ. Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs[J]. Plasma Science and Technology, 2020, 22(8): 85404-085404. DOI: 10.1088/2058-6272/ab7f3d
    [2]JIAO Juntao (焦俊韬), XIAO Dengming (肖登明), ZHAO Xiaoling (赵小令), DENG Yunkun (邓云坤). Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength[J]. Plasma Science and Technology, 2016, 18(5): 554-559. DOI: 10.1088/1009-0630/18/5/19
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [5]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [6]Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
    [7]ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
    [8]XIN Yu(信裕), DING Hongbin(丁洪斌). Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2[J]. Plasma Science and Technology, 2014, 16(2): 104-109. DOI: 10.1088/1009-0630/16/2/04
    [9]MA Chunwang (马春旺), ZHANG Yanfang (张艳芳), JIN Chan(金婵). Isospin Dependence of Fragmentation Cross Sections in Collisions of Neutron-Rich Ca Isotopes with 12C[J]. Plasma Science and Technology, 2012, 14(5): 396-398. DOI: 10.1088/1009-0630/14/5/12
    [10]SHI Xingjian (侍行剑), HU Yemin (胡业民), GAO Zhe (高喆). Optimization of Lower Hybrid Current Drive Efficiency for EAST Plasma with Non-Circular Cross Section and Finite Aspect-Ratio[J]. Plasma Science and Technology, 2012, 14(3): 215-221. DOI: 10.1088/1009-0630/14/3/06

Catalog

    Article views (286) PDF downloads (710) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return