Advanced Search+
Chi-Shung YIP (叶孜崇), Wei ZHANG (张炜), Guosheng XU (徐国盛), Noah HERSHKOWITZ. Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs[J]. Plasma Science and Technology, 2020, 22(8): 85404-085404. DOI: 10.1088/2058-6272/ab7f3d
Citation: Chi-Shung YIP (叶孜崇), Wei ZHANG (张炜), Guosheng XU (徐国盛), Noah HERSHKOWITZ. Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs[J]. Plasma Science and Technology, 2020, 22(8): 85404-085404. DOI: 10.1088/2058-6272/ab7f3d

Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs

Funds: This work is supported by the Chinese Academy of Science Hundred Youth Talent Program Start-up Funding, CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW- SLH001), National Natural Science Foundation of China (Nos. 11875285, 11575248 and 11505220), as well as US National Science Foundation Award (No. 1804654).
More Information
  • Received Date: November 19, 2019
  • Revised Date: March 08, 2020
  • Accepted Date: March 10, 2020
  • An algorithm for automated fitting of the effective electron temperature from a planar Langmuir probe I–V trace taken in a plasma with multiple Maxwellian electron populations is developed through MATLAB coding. The code automatically finds a fitting range suitable for analyzing the temperatures of each of the electron populations. The algorithm is used to analyze I–V traces from both the Institute of Plasma Physics Chinese Academy of Sciences’s Diagnostic Test Source device and a similar multi-dipole chamber at the University of Wisconsin–Madison. I–V traces reconstructed from the parameters fitted by the algorithm not only agree with the measured I–V trace but also reveal physical properties consistent with those found in previous studies. Cylindrical probe traces are also analyzed with the algorithm and it is shown that the major source of error in such attempts is the disruption of the inflection point due to both decreased signal-to-noise ratio and greater sheath expansion. It is thus recommended to use planar probes with radii much greater than the plasma Debye length when signal-to-noise ratio is poor.
  • [1]
    Langmuir I 1925 Phys. Rev. 26 585
    [2]
    Xu J C et al 2018 IEEE Trans. Plasma Sci. 46 1331
    [3]
    Xu J C et al 2016 Rev. Sci. Instrum. 87 083504
    [4]
    Bilik N et al 2015 J. Phys. D: Appl. Phys. 48 105204
    [5]
    MacKenzie K R et al 1971 Appl. Phys. Lett. 18 529
    [6]
    Itagaki N et al 2001 Thin Solid Films 390 202
    [7]
    Cao X G et al 2015 Plasma Sci. Technol. 17 20
    [8]
    Mendil D, Lahmar H and Boufendi L 2014 Plasma Sci.Technol. 16 837
    [9]
    Barnat E V and Weatherford B R 2015 Plasma Sources Sci.Technol. 24 055024
    [10]
    Yip C S et al 2013 Plasma Sources Sci. Technol. 22 065002
    [11]
    Godyak V A and Demidov V I 2011 J. Phys. D: Appl. Phys. 44 33001
    [12]
    Popov T K et al 2012 Plasma Sources Sci. Technol. 21 025004
    [13]
    Yip C S and Hershkowitz N 2015 J. Phys. D: Appl. Phys. 48 395201
    [14]
    Stamate E and Ohe K 2002 J. Vac. Sci. Technol. A 20 661
    [15]
    Thomas T L and Battle E L 1970 J. Appl. Phys. 41 3428
    [16]
    Yip C S and Hershkowitz N 2015 Plasma Sources Sci.Technol. 24 034004
    [17]
    Mizumura M et al 1992 J. Phys. D: Appl. Phys. 25 1744
    [18]
    Limpaecher R and MacKenzie K R 1973 Rev. Sci. Instrum.44 726
    [19]
    Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493
    [20]
    Riemann K U 1995 IEEE Trans. Plasma Sci. 23 709
    [21]
    Hershkowitz N 1989 How langmuir probes work ed O Auciello and D L Flamm Plasma Diagnostics (New York:Academic)
    [22]
    Sheridan T E 2000 Phys. Plasmas 7 3084
    [23]
    Lee D and Hershkowitz N 2007 Phys. Plasmas 14 033507
    [24]
    Godyak V A, Piejak R B and Alexandrovich B M 1993 J. Appl. Phys. 73 3657
  • Related Articles

    [1]Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73
    [2]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [3]Gen LI (李根), Xuechao WEI (魏学朝), Haiqing LIU (刘海庆), Junjie SHEN (申俊杰), Yinxian JIE (揭银先), Hui LIAN (连辉), Long ZENG (曾龙), Zhiyong ZOU (邹志勇), Jibo ZHANG (张际波), Shouxin WANG (王守信). Development of an HCN dual laser for the interferometer on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84003-084003. DOI: 10.1088/2058-6272/aa667b
    [4]JIAO Zhihong (焦志宏), WANG Guoli (王国利), ZHOU Xiaoxin (周效信), WU Chaohui (吴朝辉), ZUO Yanlei (左言磊), ZENG Xiaoming (曾小明), ZHOU Kainan (周凯南), SU Jingqin (粟敬钦). Study on the Two-Dimensional Density Distribution for Gas Plasmas Driven by Laser Pulse[J]. Plasma Science and Technology, 2016, 18(12): 1169-1174. DOI: 10.1088/1009-0630/18/12/05
    [5]GAO Yu (高宇), WANG Yumin (王嵎民), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), QU Hao (屈浩), HAN Xiang (韩翔), WEN Fei (文斐), KONG Defeng (孔德峰), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), SUN Youwen (孙有文), LIANG Yunfeng (梁云峰), GAO Xiang (高翔), EAST Team. Preliminary Study of the Magnetic Perturbation Effects on the Edge Density Profiles and Fluctuations Using Reflectometers on EAST[J]. Plasma Science and Technology, 2016, 18(9): 879-883. DOI: 10.1088/1009-0630/18/9/01
    [6]KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20
    [7]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [8]Takashi MINAMI, Shohei ARAI, Naoki KENMOCH, Hiroaki YASHIRO, Chihiro TAKAHASHI, Shinji KOBAYASHI, Tohru MIZUUCHI, Shinsuke OHSHIMA, Satoshi YAMAMOTO, Hiroyuki OKADA, Kazunobu NAGASAKI, et al. Present Status of the Nd:YAG Thomson Scattering System Development for Time Evolution Measurement of Plasma Profile on Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 240-243. DOI: 10.1088/1009-0630/15/3/10
    [9]ZANG Linge (臧临阁), M. TAKEUCHI, N. NISHINO, T. MIZUUCHI, S. OHSHIMA, K. KASAJIMA, M. SHA, K. MUKAI, et al. Observation of Edge Plasma Fluctuations with a Fast Camera in Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 213-216. DOI: 10.1088/1009-0630/15/3/04
    [10]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02
  • Cited by

    Periodical cited type(2)

    1. Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e
    2. Zhang, N., Liu, H.Q., Xie, J.X. et al. Development of a dual HCN laser interferometer on a small tokamak device. Journal of Instrumentation, 2023, 18(10): C10008. DOI:10.1088/1748-0221/18/10/C10008

    Other cited types(0)

Catalog

    Article views (161) PDF downloads (214) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return