Advanced Search+
Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73
Citation: Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73

Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT

Funds: This work is supported by the National Magnetic Confinement Fusion Science Program of China under Contract No. 2015GB111001 and by National Natural Science Foundation of China (Grant No. 11575067).
More Information
  • Received Date: December 25, 2017
  • A Thomson scattering diagnostic system is under construction at the Joint Texas Experimental Tokamak (J-TEXT). A 1064 nm Nd:YAG laser with 50 Hz repetition rate is used as the laser source. We have used a software for careful and precise control of the laser through serial communication. A time sequence operating system has been developed to synchronize the laser control and data acquisition system with the central control system (CSS). The system operates commands from the CSS of J-TEXT and generates triggers for the laser and data acquisition system in the proper sequence. It also measures an asynchronous time value that is needed for accurate time stamping. All functions are served by a field-programmable gate array development platform that is suitable for high-speed data and signal processing applications. Several embedded peripherals, including Ethernet and USB 2.0, provide communication with the CSS and the server.
  • [1]
    Johnson D et al 1985 Rev. Sci. Instrum. 56 1015
    [2]
    Greenfield C M et al 1990 Rev. Sci. Instrum. 61 3286
    [3]
    Carlstrom T N et al 1992 Rev. Sci. Instrum. 63 4901
    [4]
    Hatae T et al 1999 Rev. Sci. Instrum. 70 772
    [5]
    Lee J H, Oh S T and Wi H M 2010 Rev. Sci. Instrum. 81 10D528
    [6]
    Qing Z et al 2010 Plasma Sci. Technol. 12 144
    [7]
    Liu C H et al 2008 High Power Laser Part. Beams 20 1119 (in Chinese)
    [8]
    Kajita S, Hatae T and Kusama Y 2008 Rev. Sci. Instrum. 79 10E726
    [9]
    Yang Z J et al 2016 Rev. Sci. Instrum. 87 11E112
    [10]
    Chen J et al 2012 Rev. Sci. Instrum. 83 10E306
    [11]
    Hartfuss H J, Geist T and Hirsch M 1999 Plasma Phys. Control. Fusion 39 1693
    [12]
    Zhou Y N et al 2016 Rev. Sci. Instrum. 87 11E522
    [13]
    Han X et al 2018 IEEE Trans. Plasma Sci. 46 406
    [14]
    Lee W R et al 2012 Rev. Sci. Instrum. 83 093505

Catalog

    Article views (213) PDF downloads (489) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return