Advanced Search+
Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73
Citation: Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73

Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT

Funds: This work is supported by the National Magnetic Confinement Fusion Science Program of China under Contract No. 2015GB111001 and by National Natural Science Foundation of China (Grant No. 11575067).
More Information
  • Received Date: December 25, 2017
  • A Thomson scattering diagnostic system is under construction at the Joint Texas Experimental Tokamak (J-TEXT). A 1064 nm Nd:YAG laser with 50 Hz repetition rate is used as the laser source. We have used a software for careful and precise control of the laser through serial communication. A time sequence operating system has been developed to synchronize the laser control and data acquisition system with the central control system (CSS). The system operates commands from the CSS of J-TEXT and generates triggers for the laser and data acquisition system in the proper sequence. It also measures an asynchronous time value that is needed for accurate time stamping. All functions are served by a field-programmable gate array development platform that is suitable for high-speed data and signal processing applications. Several embedded peripherals, including Ethernet and USB 2.0, provide communication with the CSS and the server.
  • [1]
    Johnson D et al 1985 Rev. Sci. Instrum. 56 1015
    [2]
    Greenfield C M et al 1990 Rev. Sci. Instrum. 61 3286
    [3]
    Carlstrom T N et al 1992 Rev. Sci. Instrum. 63 4901
    [4]
    Hatae T et al 1999 Rev. Sci. Instrum. 70 772
    [5]
    Lee J H, Oh S T and Wi H M 2010 Rev. Sci. Instrum. 81 10D528
    [6]
    Qing Z et al 2010 Plasma Sci. Technol. 12 144
    [7]
    Liu C H et al 2008 High Power Laser Part. Beams 20 1119 (in Chinese)
    [8]
    Kajita S, Hatae T and Kusama Y 2008 Rev. Sci. Instrum. 79 10E726
    [9]
    Yang Z J et al 2016 Rev. Sci. Instrum. 87 11E112
    [10]
    Chen J et al 2012 Rev. Sci. Instrum. 83 10E306
    [11]
    Hartfuss H J, Geist T and Hirsch M 1999 Plasma Phys. Control. Fusion 39 1693
    [12]
    Zhou Y N et al 2016 Rev. Sci. Instrum. 87 11E522
    [13]
    Han X et al 2018 IEEE Trans. Plasma Sci. 46 406
    [14]
    Lee W R et al 2012 Rev. Sci. Instrum. 83 093505
  • Related Articles

    [1]Bing QI (齐冰), Chunxu QIN (秦春旭), Haikun SHANG (尚海昆), Li XIONG (熊莉). Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(8): 85402-085402. DOI: 10.1088/2058-6272/ab15a1
    [2]Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
    [3]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [4]Jia TIAN (田甲), Wenzheng LIU (刘文正), Weisheng CUI (崔伟胜), Yongjie GAO (高永杰). Generation characteristics of a metal ion plasma jet in vacuum discharge[J]. Plasma Science and Technology, 2018, 20(8): 85403-085403. DOI: 10.1088/2058-6272/aabedf
    [5]Carlo POGGI, Théo GUILLAUME, Fabrice DOVEIL, Laurence CHÉRIGIER-KOVACIC. Estimation of the Lyman-α signal of the EFILE diagnostic under static or radiofrequency electric field in vacuum[J]. Plasma Science and Technology, 2018, 20(7): 74001-074001. DOI: 10.1088/2058-6272/aabde3
    [6]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [7]LIU Wenzheng(刘文正), WANG Hao(王浩), DOU Zhijun(窦志军). Impact of the Insulator on the Electric Field and Generation Characteristics of Vacuum Arc Metal Plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. DOI: 10.1088/1009-0630/16/2/09
    [8]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [9]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05
    [10]FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.

Catalog

    Article views (213) PDF downloads (489) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return