Advanced Search+
Zichen HE, Cary SMITH, Zhili ZHANG, Theodore M BIEWER, Naibo JIANG, Paul S HSU, Sukesh ROY. Pulse-burst laser-based 10 kHz Thomson scattering measurements[J]. Plasma Science and Technology, 2019, 21(10): 105603. DOI: 10.1088/2058-6272/ab2e30
Citation: Zichen HE, Cary SMITH, Zhili ZHANG, Theodore M BIEWER, Naibo JIANG, Paul S HSU, Sukesh ROY. Pulse-burst laser-based 10 kHz Thomson scattering measurements[J]. Plasma Science and Technology, 2019, 21(10): 105603. DOI: 10.1088/2058-6272/ab2e30

Pulse-burst laser-based 10 kHz Thomson scattering measurements

Funds: This work was supported by the US Department of Energy’s STTR program under Grant No. DE-SC0018672 (Program Manager: Dr Matthew Lanctot).
More Information
  • Received Date: April 07, 2019
  • Revised Date: June 29, 2019
  • Accepted Date: June 30, 2019
  • Thomson scattering (TS), as a popular and reliable diagnostic technique, has successfully measured electron temperatures and electron number densities of plasmas for many years. However, conventional TS techniques using Nd:YAG lasers operate only at tens of hertz. Here, we present the development of a high-repetition-rate TS instrument based on a high-speed, pulse-burst laser system to greatly increase the temporal resolution of measurements. Successful instrument prototype testing was carried out by collecting TS light from laboratory helium and argon plasmas at 10 kHz. Calibration of the instrument detection sensitivity using nitrogen/ oxygen rotational Raman scattering signal is also presented. Quantitative electron number densities and electron temperatures of the plasma were acquired at 10 kHz, for stable plasma discharges as, respectively, ∼0.9 eV and ∼5.37×1021 m−3 for the argon plasma, and ∼1 eV and ∼6.5×1021 m−3 for the helium plasma.
  • [1]
    Evans D E and Katzenstein J 1969 Rep. Prog. Phys. 32 207
    [2]
    Fiocco G and Thompson E 1963 Phys. Rev. Lett. 10 89
    [3]
    Russell J and Cohn R 2012 Thomson Scattering (New York:Book on Demand)
    [4]
    Froula D H et al 2011 Chapter 1—introduction Plasma Scattering of Electromagnetic Radiation ed D H Froula et al vol 1 2nd edn (New York: Academic)
    [5]
    Biewer T M et al 2016 Rev. Sci. Instrum. 87 11E518
    [6]
    Kafle N, Biewer T M and Donovan D C 2018 Rev. Sci.Instrum. 89 10C107
    [7]
    Kenmochi N et al 2018 Rev. Sci. Instrum. 89 10C101
    [8]
    Sos M et al 2018 Rev. Sci. Instrum. 89 10C105
    [9]
    Rocco S V R et al 2018 Rev. Sci. Instrum. 89 10C117
    [10]
    Banasek J T et al 2018 IEEE Trans. Plasma Sci. 46 3901
    [11]
    Carlstrom T N et al 2018 Rev. Sci. Instrum. 89 10C111
    [12]
    Ottaviano A et al 2018 Rev. Sci. Instrum. 8 10C120
    [13]
    Patton R A et al 2012 Appl. Phys. B 108 377
    [14]
    Patton R A et al 2012 Appl. Phys. B 106 457
    [15]
    Kaminski C F, Hult J and Aldén M 1999 Appl. Phys. B 68 757
    [16]
    Jiang N B and Lempert W R 2008 Opt. Lett. 33 2236
    [17]
    Jiang N B et al 2011 Appl. Opt. 50 A20
    [18]
    Jiang N B et al 2011 Proc. Combust. Inst. 33 767
    [19]
    Miller J D et al 2011 Opt. Lett. 36 3927
    [20]
    Slipchenko M N et al 2012 Opt. Lett. 37 1346
    [21]
    Gabet K N et al 2010 Appl. Phys. B 101 1
    [22]
    Den Hartog D J et al 2010 Rev. Sci. Instrum. 81 10D513
    [23]
    Den Hartog D J et al 2017 J. Inst. 12 C10002
    [24]
    Slipchenko M N et al 2013 Opt. Express 21 681
  • Related Articles

    [1]Pengpeng MA (麻鹏鹏), Maogen SU (苏茂根), Shiquan CAO (曹世权), Kaiping WANG (王凯平), Weiwei HAN (韩伟伟), Duixiong SUN (孙对兄), Qi MIN (敏琦), Chenzhong DONG (董晨钟). Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020, 22(8): 85502-085502. DOI: 10.1088/2058-6272/ab869b
    [2]Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73
    [3]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [4]LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11
    [5]WANG Teng (王腾), GAO Xiangdong (高向东), Katayama SEIJI. Analysis of Laser-Induced Plume During Disk Laser Welding at Different Speeds[J]. Plasma Science and Technology, 2013, 15(8): 821-824. DOI: 10.1088/1009-0630/15/8/20
    [6]ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07
    [7]Takashi MINAMI, Shohei ARAI, Naoki KENMOCH, Hiroaki YASHIRO, Chihiro TAKAHASHI, Shinji KOBAYASHI, Tohru MIZUUCHI, Shinsuke OHSHIMA, Satoshi YAMAMOTO, Hiroyuki OKADA, Kazunobu NAGASAKI, et al. Present Status of the Nd:YAG Thomson Scattering System Development for Time Evolution Measurement of Plasma Profile on Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 240-243. DOI: 10.1088/1009-0630/15/3/10
    [8]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02
    [9]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
    [10]Kazumichi NARIHARA, Hiroshi HAYASHI. Asphericalizing the Light Collection Mirror for the 200-Point Thomson Scattering Diagnostic Installed on the Large Helical Device[J]. Plasma Science and Technology, 2011, 13(4): 415-419.
  • Cited by

    Periodical cited type(7)

    1. He, Z., Ranganathan, R.V., Froedge, D.T. et al. Simultaneous measurements of forward Thomson scattering and rotational Raman scattering in a weakly ionized plasma. OSA Continuum, 2023, 2(2): 327-337. DOI:10.1364/OPTCON.474339
    2. Gottfried, J.A., Rose, C.E., Simpson, S. et al. Collective Thomson scattering measurement of plasma evolution during the current pulse in a laser-triggered switch. Applied Physics Letters, 2022, 121(24): 244101. DOI:10.1063/5.0131471
    3. Funaba, H., Yasuhara, R., Uehara, H. et al. Electron temperature and density measurement by Thomson scattering with a high repetition rate laser of 20 kHz on LHD. Scientific Reports, 2022, 12(1): 15112. DOI:10.1038/s41598-022-19328-9
    4. He, Z., Kafle, N., Gebhart, T.E. et al. Implementation of a portable diagnostic system for Thomson scattering measurements on an electrothermal arc source. Review of Scientific Instruments, 2022, 93(11): 113526. DOI:10.1063/5.0101835
    5. Kafle, N., Elliott, D., Garren, E.W. et al. Design and implementation of a portable diagnostic system for Thomson scattering and optical emission spectroscopy measurements. Review of Scientific Instruments, 2021, 92(6): 063002. DOI:10.1063/5.0043818
    6. Slipchenko, M.N., Meyer, T.R., Roy, S. Advances in burst-mode laser diagnostics for reacting and nonreacting flows. Proceedings of the Combustion Institute, 2021, 38(1): 1533-1560. DOI:10.1016/j.proci.2020.07.024
    7. Wu, Y., Starikovskiy, A.Y., Leonov, B.S. et al. Time-resolved electron temperature and electron density measurements in nanosecond pulse discharges in o2-ar and co2-ar mixtures. 2020. DOI:10.2514/6.2020-0438

    Other cited types(0)

Catalog

    Article views (218) PDF downloads (228) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return