Citation: | Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU. An innovative approach to effective breeding blanket design for future fusion reactors[J]. Plasma Science and Technology, 2024, 26(10): 105601. DOI: 10.1088/2058-6272/ad5a66 |
An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors. The difficulty is to achieve tritium breeding ratio (TBR) target of 1.05 or more. This paper presents a new design approach to the blanket design process. It indicates that fusion blanket design is affected by universal functions based on iterations. Three aspects are worth more attention from fusion engineers in the future. The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation. The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion. The third factor is temperature field related to the tritium release. In particular, it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field. This approach is novel for blanket engineering in development of a fusion reactor.
This work is supported by the Project for Scientific Research of West Anhui University (No. 00701092282).
[1] |
Li J et al 2013 Nat. Phys. 9 817 doi: 10.1038/nphys2795
|
[2] |
Schissel D P et al 1991 Nucl. Fusion 31 73 doi: 10.1088/0029-5515/31/1/007
|
[3] |
Ghendrih P et al 2002 Nucl. Fusion 42 1221 doi: 10.1088/0029-5515/42/10/308
|
[4] |
Lee G S et al 2000 Nucl. Fusion 40 575 doi: 10.1088/0029-5515/40/3Y/319
|
[5] |
Tobita K et al 2019 Fusion Sci. Technol. 75 372 doi: 10.1080/15361055.2019.1600931
|
[6] |
Song Y T et al 2014 IEEE Trans. Plasma Sci. 42 503 doi: 10.1109/TPS.2014.2299277
|
[7] |
Kim K et al 2013 Fusion Eng. Des. 88 488 doi: 10.1016/j.fusengdes.2013.02.123
|
[8] |
Federici G et al 2014 Fusion Eng. Des. 89 882 doi: 10.1016/j.fusengdes.2014.01.070
|
[9] |
Fortescue P 1975 Ann. Nucl. Energy 2 29 doi: 10.1016/0306-4549(75)90068-7
|
[10] |
Airola J et al 1984 Nucl. Eng. Des. Fusion 1 185 doi: 10.1016/0167-899X(84)90039-9
|
[11] |
Feng K M et al 2012 Fusion Eng. Des. 87 1138 doi: 10.1016/j.fusengdes.2012.02.098
|
[12] |
Cao Q X et al 2021 Fusion Eng. Des. 172 112918 doi: 10.1016/j.fusengdes.2021.112918
|
[13] |
Giancarli L M et al 2012 Fusion Eng. Des. 87 395 doi: 10.1016/j.fusengdes.2011.11.005
|
[14] |
Tanabe T 2013 J. Nucl. Mater. 438 S19 doi: 10.1016/j.jnucmat.2013.01.284
|
[15] |
Jia X B et al 2007 Atomic Energy Sci. Technol. 41 335 (in Chinese)
|
[16] |
Fischer U et al 2005 Fusion Sci. Technol. 47 1052 doi: 10.13182/FST05-A826
|
[17] |
Lee Y K 2010 Fusion Eng. Des. 85 1125 doi: 10.1016/j.fusengdes.2010.02.032
|
[18] |
Tobita K et al 2010 Fusion Eng. Des. 85 1342 doi: 10.1016/j.fusengdes.2010.03.038
|
[19] |
Someya Y et al 2011 Fusion Eng. Des. 86 2269 doi: 10.1016/j.fusengdes.2011.01.141
|
[20] |
Liu C et al 2011 Fusion Eng. Des. 86 2839 doi: 10.1016/j.fusengdes.2011.05.012
|
[21] |
Li J et al 2020 Fusion Sci. Technol. 76 70 doi: 10.1080/15361055.2019.1610320
|
[22] |
Liu C L et al 2014 IEEE Trans. Plasma Sci. 42 1759 doi: 10.1109/TPS.2014.2321180
|
[23] |
Liu C and Tobita K 2010 Fusion Eng. Des. 85 979 doi: 10.1016/j.fusengdes.2009.11.004
|
[24] |
Zhang X et al 2020 Fusion Eng. Des. 159 111875 doi: 10.1016/j.fusengdes.2020.111875
|
[25] |
Zhang X et al 2022 Fusion Eng. Des. 181 113211 doi: 10.1016/j.fusengdes.2022.113211
|
[26] |
Zhang X et al 2023 Ann. Nucl. Energy 186 109753 doi: 10.1016/j.anucene.2023.109753
|
[27] |
Qiu Y et al 2018 IEEE Trans. Plasma Sci. 46 2277
|
[28] |
Xiao C J et al 2011 Nucl. Fusion Plasma Phys. 31 224 (in Chinese)
|
[29] |
Tobita K et al 2009 Nucl. Fusion 49 075029 doi: 10.1088/0029-5515/49/7/075029
|
[1] | Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9 |
[2] | H L SWAMI, C DANANI, A K SHAW. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations[J]. Plasma Science and Technology, 2018, 20(6): 65602-065602. DOI: 10.1088/2058-6272/aaabb4 |
[3] | Paritosh CHAUDHURI, Chandan DANANI, E RAJENDRAKUMAR. Comparative studies for two different orientations of pebble bed in an HCCB blanket[J]. Plasma Science and Technology, 2017, 19(12): 125604. DOI: 10.1088/2058-6272/aa8807 |
[4] | ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11 |
[5] | WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03 |
[6] | ZHU Qingjun (祝庆军), LI Jia (李佳), LIU Songlin (刘松林). Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(7): 775-780. DOI: 10.1088/1009-0630/18/7/13 |
[7] | MA Xuebin(马学斌), LIU Songlin(刘松林), LI Jia(李佳), PU Yong(蒲勇), CHEN Xiangcun(陈香存). Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept[J]. Plasma Science and Technology, 2014, 16(4): 390-395. DOI: 10.1088/1009-0630/16/4/16 |
[8] | YANG Ning(杨拧), ZHANG Ming(张明), LI Chuan(李传), SONG Zhiquan(宋执权), YU Kexun(于克训), ZHUANG Ge(庄革), XU Tao(徐涛). Preliminary Design and Analysis of the DC Reactor for the ITER Converter[J]. Plasma Science and Technology, 2014, 16(3): 273-277. DOI: 10.1088/1009-0630/16/3/18 |
[9] | YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14 |
[10] | Youji SOMEYA, Kenji TOBITA. Estimation of TBR on the Gap Between Neighboring Blanket Modules in the DEMO Reactor[J]. Plasma Science and Technology, 2013, 15(2): 171-174. DOI: 10.1088/1009-0630/15/2/19 |