Advanced Search+
Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
Citation: Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9

Loss-cone instabilities for compact fusion reactor and field-reversed configuration

More Information
  • Received Date: May 23, 2018
  • Loss-cone instabilities are studied for linear fusion devices. The gyro-kinetic equation for such a configuration is rigorously constructed in terms of action-angle variables by making use of canonical transformation. The dispersion relation, including for the first time, finite bounce frequency is obtained and numerically solved. The loss-cone modes are found near ion-cyclotron frequency. The growth rates are greatly reduced and approaching zero with increasing beta value. The results suggest that loss-cone instabilities are unlikely to be threatening to linear fusion devices since a new longitudinal invariant is found and gives a constraint which helps confinement.
  • [1]
    Bagryansky P A et al 2015 Phys. Rev. Lett. 114 205001
    [2]
    Binderbauer M W et al 2015 Phys. Plasmas 22 056110
    [3]
    McGuire T 2015 Colloquium: The Lockheed Martin Compact Fusion Reactor (Princeton, NJ: Princeton University) https://pppl.gov/events/colloquium-lockheed-martin- compact-fusion-reactor
    [4]
    Post R F and Rosenbluth M N 1966 Phys. Fluids 9 730
    [5]
    Rosenbluth M N and Post R F 1965 Phys. Fluids 8 547
    [6]
    Bajaj N K and Krall N A 1971 Phys. Fluids 14 2158
    [7]
    Davidson R C and Gladd N T 1977 Phys. Fluids 20 1516
    [8]
    Summers D and Thorne R M 1995 J. Plasma Phys. 53 293
    [9]
    Beasley C O and Cordey J G 1968 Plasma Phys. 10 411
    [10]
    Bishop A S 1958 Project Sherwood: The U.S. Program in Controlled Fusion (Reading, MA: Addison-Wesley)
    [11]
    Makowski M A and Emmert G A 1985 Phys. Fluids 28 2838
    [12]
    Kaufman A N 1972 Phys. Fluids 15 1063
    [13]
    Lichtenberg A J and Lieberman M A 1983 Regular and Stochastic Motion (New York: Springer)
    [14]
    Stix T H 1992 Waves in Plasmas (New York: American Institute of Physics) 10017-3483
    [15]
    Lee X S, Myra J R and Catto P J 1983 Phys. Fluids 26 223
    [16]
    Wang Z T et al 2012 Phys. Plasmas 19 072110
    [17]
    Wang Z T et al 2014 Phys. Plasmas 21 032505
    [18]
    Gott Y V and Ioffe M S 1962 Nucl. Fusion Suppl. 3 1045
    [19]
    Fowler T K 1969 Nucl. Fusion 9 3
  • Related Articles

    [1]Debing ZHANG, Pengfei ZHAO, Yingfeng XU, Lei YE, Xianmei ZHANG. Gyrokinetic simulations of the kinetic electron effects on the electrostatic instabilities on the ITER baseline scenario[J]. Plasma Science and Technology, 2024, 26(9): 095101. DOI: 10.1088/2058-6272/ad4e78
    [2]Siqi WANG, Huishan CAI, Baofeng GAO, Ding LI. Stabilization of ion-temperature-gradient mode by trapped fast ions[J]. Plasma Science and Technology, 2022, 24(6): 065102. DOI: 10.1088/2058-6272/ac5e73
    [3]Weihao TIE (铁维昊), Cui MENG (孟萃), Chengguang ZHAO (赵程光), Xiaogang LU (鲁小刚), Jun XIE (谢军), Dan JIANG (蒋丹), Zirang YAN (闫自让). Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application[J]. Plasma Science and Technology, 2019, 21(9): 95503-095503. DOI: 10.1088/2058-6272/ab2626
    [4]Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
    [5]Jiaqi DONG (董家齐). Kinetic micro-instabilities in the presence of impurities in toroidal magnetized plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94005-094005. DOI: 10.1088/2058-6272/aad4f4
    [6]H L SWAMI, C DANANI, A K SHAW. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations[J]. Plasma Science and Technology, 2018, 20(6): 65602-065602. DOI: 10.1088/2058-6272/aaabb4
    [7]XIE Huasheng (谢华生), XIAO Yong (肖湧). PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma[J]. Plasma Science and Technology, 2016, 18(2): 97-107. DOI: 10.1088/1009-0630/18/2/01
    [8]LI Dehui(李德徽), XIANG Nong(项农), LIN Yu(林郁), WANG Xueyi(汪学毅), YANG Cheng(杨程), MA Jun(马骏). Benchmark Simulations of Gyro-Kinetic Electron and Fully-Kinetic Ion Model for Lower Hybrid Waves in Linear Region[J]. Plasma Science and Technology, 2014, 16(9): 821-825. DOI: 10.1088/1009-0630/16/9/03
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]T. WATARI, Y. HAMADA. Linear Gyro-Kinetic Response Function for Zonal Flows[J]. Plasma Science and Technology, 2011, 13(2): 157-161.

Catalog

    Article views (158) PDF downloads (427) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return