Advanced Search+
Jiaolong DONG (董蛟龙), Jianchao LI (李建超), Yonghua DING (丁永华), Xiaoqing ZHANG (张晓卿), Nengchao WANG (王能超), Da LI (李达), Wei YAN (严伟), Chengshuo SHEN (沈呈硕), Ying HE (何莹), Xiehang REN (任颉颃). Machine learning application to predict the electron temperature on the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(8): 85101-085101. DOI: 10.1088/2058-6272/ac0685
Citation: Jiaolong DONG (董蛟龙), Jianchao LI (李建超), Yonghua DING (丁永华), Xiaoqing ZHANG (张晓卿), Nengchao WANG (王能超), Da LI (李达), Wei YAN (严伟), Chengshuo SHEN (沈呈硕), Ying HE (何莹), Xiehang REN (任颉颃). Machine learning application to predict the electron temperature on the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(8): 85101-085101. DOI: 10.1088/2058-6272/ac0685

Machine learning application to predict the electron temperature on the J-TEXT tokamak

Funds: This work was supported by the National Magnetic Confinement Fusion Science Program (Nos. 2018YFE0301104 and 2018YFE0301100), State Key Laboratory of Advanced Electromagnetic Engineering and Technology (No. AEET2020KF001) and National Natural Science Foundation of China (Nos. 12075096 and 51821005).
More Information
  • Received Date: March 30, 2021
  • Revised Date: May 27, 2021
  • Accepted Date: May 27, 2021
  • The reliability of diagnostic systems in tokamak plasma is of great significance for physics researches or fusion reactor. When some diagnostics fail to detect information about the plasma status, such as electron temperature, they can also be obtained by another method: fitted by other diagnostic signals through machine learning. The paper herein is based on a machine learning method to predict electron temperature, in case the diagnostic systems fail to detect plasma temperature. The fully-connected neural network, utilizing back propagation with two hidden layers, is utilized to estimate plasma electron temperature approximately on the J-TEXT. The input parameters consist of soft x-ray emission intensity, electron density, plasma current, loop voltage, and toroidal magnetic field, while the targets are signals of electron temperature from electron cyclotron emission and x-ray imaging crystal spectrometer. Therefore, the temperature profile is reconstructed by other diagnostic signals, and the average errors are within 5%. In addition, generalized regression neural network can also achieve this function to estimate the temperature profile with similar accuracy. Predicting electron temperature by neural network reveals that machine learning can be used as backup means for plasma information so as to enhance the reliability of diagnostics.
  • [1]
    Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526
    [2]
    Zheng W et al 2018 Nucl. Fusion 58 056016
    [3]
    Dormido-Canto S et al 2013 Nucl. Fusion 53 113001
    [4]
    Lister J B and Schnurrenberger H 1991 Nucl. Fusion 31 1291
    [5]
    Svensson J, von Hellermann M and König R W T 1999 Plasma Phys. Control. Fusion 41 315
    [6]
    Rattá G A et al 2008 Rev. Sci. Instrum. 79 10F328
    [7]
    Gaudio P et al 2014 Plasma Phys. Control. Fusion 56 114002
    [8]
    Piccione A et al 2020 Nucl. Fusion 60 046033
    [9]
    Wang B et al 2016 J. Fusion Energy 35 390
    [10]
    Chilenski M A et al 2015 Nucl. Fusion 55 023012
    [11]
    Pavone A et al 2019 Plasma Phys. Control. Fusion 61 075012
    [12]
    Felici F et al 2018 Nucl. Fusion 58 096006
    [13]
    Liang Y L et al 2019 Nucl. Fusion 59 112016
    [14]
    Ding Y H et al 2018 Plasma Sci. Technol. 20 125101
    [15]
    Yang Z J et al 2012 Rev. Sci. Instrum. 83 10E313
    [16]
    Yang Z J et al 2016 Rev. Sci. Instrum. 87 11E112
    [17]
    Jin W et al 2012 Rev. Sci. Instrum. 83 10E502
    [18]
    Jin W et al 2014 Rev. Sci. Instrum. 85 023509
    [19]
    Li P et al 2008 Comput. Appl. Softw. 25 149 (in Chinese)
    [20]
    Zhou M and Li S L 2007 Comput. Meas. Control 09 1189 (in Chinese)
    [21]
    Ruck D W, Rogers S K and Kabrisky M 1990 J. Neural Netw. Comput. 2 40
    [22]
    Li J C et al 2014 Rev. Sci. Instrum. 85 11E414
    [23]
    Chen J et al 2012 Rev. Sci. Instrum. 83 10E306
  • Related Articles

    [1]Jianqing CAI, Yunfeng LIANG, Zhongyong CHEN, Wei ZHENG, Di HU, Lei XUE, Zhifang LIN, Xiang GU, the EHL-2 Team. Disruption prediction and mitigation strategies in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024013. DOI: 10.1088/2058-6272/adb40b
    [2]Yumin WANG, Qifeng XIE, Renyi TAO, Hui ZHANG, Xiaokun BO, Tiantian SUN, Xiuchun LUN, Lin CHEN, Weiqiang TAN, Dong GUO, Bihe DENG, Minsheng LIU, the EXL-50 Team. Design of the electron cyclotron emission diagnostic on EXL-50 spherical torus[J]. Plasma Science and Technology, 2024, 26(3): 034008. DOI: 10.1088/2058-6272/ad0d54
    [3]Mingxiang HUANG, Zhengkang REN, Feiyue MAO, Zhoujun YANG, Yuan GAO, Zhichao ZHANG, Shunfan HE, Guoliang LI, Jinrong FAN, Wei TIAN, Nengchao WANG, Zhipeng CHEN, Yonghua DING, Yuan PAN, Zhongyong CHEN. Behavior of multiple modes before and during minor disruption with the external resonant magnetic perturbations on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(6): 064013. DOI: 10.1088/2058-6272/ac6da9
    [4]Bin CHEN, Yubao ZHU, Qing ZHOU, Jiangbo DING, Xianming SONG, Shaodong SONG, Yuanming YANG, Xin ZHAO, Enwu YANG, Minsheng LIU, the EXL-50 Team. Microwave preionization and electron cyclotron resonance plasma current startup in the EXL-50 spherical tokamak[J]. Plasma Science and Technology, 2022, 24(1): 015104. DOI: 10.1088/2058-6272/ac3640
    [5]Kai ZHANG (张凱), Dalong CHEN (陈大龙), Bihao GUO (郭笔豪), Junjie CHEN (陈俊杰), Bingjia XIAO (肖炳甲). Density limit disruption prediction using a long short-term memory network on EAST[J]. Plasma Science and Technology, 2020, 22(11): 115602. DOI: 10.1088/2058-6272/abb28f
    [6]Yonghua DING (丁永华), Zhongyong CHEN (陈忠勇), Zhipeng CHEN (陈志鹏), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Qiming HU (胡启明), Bo RAO (饶波), Jie CHEN (陈杰), Zhifeng CHENG (程芝峰), Li GAO (高丽), Zhonghe JIANG (江中和), Lu WANG (王璐), Zhijiang WANG (王之江), Xiaoqing ZHANG (张晓卿), Wei ZHENG (郑玮), Ming ZHANG (张明), Ge ZHUANG (庄革), Qingquan YU (虞清泉), Yunfeng LIANG (梁云峰), Kexun YU (于克训), Xiwei HU (胡希伟), Yuan PAN (潘垣), Kenneth William GENTLE, the J-TEXT Team. Overview of the J-TEXT progress on RMP and disruption physics[J]. Plasma Science and Technology, 2018, 20(12): 125101. DOI: 10.1088/2058-6272/aadcfd
    [7]Jinxia ZHU (竹锦霞), Yipo ZHANG (张轶泼), Yunbo DONG (董云波), HL-A Team. Characterization of plasma current quench during disruptions at HL-2A[J]. Plasma Science and Technology, 2017, 19(5): 55101-055101. DOI: 10.1088/2058-6272/aa5ff2
    [8]WANG Bo (王勃), Robert GRANETZ, XIAO Bingjia (肖炳甲), LI Jiangang (李建刚), YANG Fei (杨飞), LI Junjun (李君君), CHEN Dalong (陈大龙). Establishment and Assessment of Plasma Disruption and Warning Databases from EAST[J]. Plasma Science and Technology, 2016, 18(12): 1162-1168. DOI: 10.1088/1009-0630/18/12/04
    [9]DING Yonghua (丁永华), JIN Xuesong (金雪松), CHEN Zhenzhen (陈真真), ZHUANG Ge (庄革). Neural Network Prediction of Disruptions Caused by Locked Modes on J-TEXT Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1154-1159. DOI: 10.1088/1009-0630/15/11/14
    [10]ZHUANG Huidong (庄会东), ZHANG Xiaodong (张晓东). Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7[J]. Plasma Science and Technology, 2013, 15(8): 745-749. DOI: 10.1088/1009-0630/15/8/05
  • Cited by

    Periodical cited type(7)

    1. Farahani, F.A., Depla, D. Phase composition of sputter deposited tungsten thin films. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.131447
    2. Shi, Q., Kajita, S., Ohno, N. Tungsten fuzz growth at low temperatures (<900 K) on a surface with nanocones. Nuclear Materials and Energy, 2024. DOI:10.1016/j.nme.2024.101668
    3. Kajita, S., Yagi, T., Ohno, N. Thermal Conductivity Measurement of Fuzzy W Using a Thermoreflectance Method. IEEE Transactions on Plasma Science, 2024, 52(9): 4365-4370. DOI:10.1109/TPS.2023.3348465
    4. Feng, S., Kajita, S., Yasuhara, R. et al. Formation of corrugated nano-fuzz tungsten thin film on silicon via helium plasma irradiation. Japanese Journal of Applied Physics, 2024, 63(1): 010904. DOI:10.35848/1347-4065/ad12ef
    5. Feng, S., Natsume, H., Kajita, S. et al. Fabrication of tungsten-based optical diffuser using fiberform nanostructure via efficient plasma route. Optics Express, 2023, 31(16): 25438-25445. DOI:10.1364/OE.493993
    6. Zhou, J., Lu, F., Cong, J. et al. Effect of plasma jet on electrochemical properties of silk fibroin hydrogel doped with PEDOT:PSS. Energy Science and Engineering, 2023, 11(7): 2521-2534. DOI:10.1002/ese3.1471
    7. Kajita, S., Yagi, T., Ohno, N. Thermal conductivity measurement of fuzzy W using a thermoreflectance method. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2023. DOI:10.23919/ISDEIV55268.2023.10200254

    Other cited types(0)

Catalog

    Article views (140) PDF downloads (224) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return