Advanced Search+
Jianqing CAI, Yunfeng LIANG, Zhongyong CHEN, Wei ZHENG, Di HU, Lei XUE, Zhifang LIN, Xiang GU, the EHL-2 Team. Disruption prediction and mitigation strategies in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024013. DOI: 10.1088/2058-6272/adb40b
Citation: Jianqing CAI, Yunfeng LIANG, Zhongyong CHEN, Wei ZHENG, Di HU, Lei XUE, Zhifang LIN, Xiang GU, the EHL-2 Team. Disruption prediction and mitigation strategies in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024013. DOI: 10.1088/2058-6272/adb40b

Disruption prediction and mitigation strategies in the EHL-2 spherical torus

More Information
  • Author Bio:

    Jianqing CAI: caijianqinga@enn.cn

  • Corresponding author:

    Jianqing CAI, caijianqinga@enn.cn

  • Received Date: October 23, 2024
  • Revised Date: February 04, 2025
  • Accepted Date: February 06, 2025
  • Available Online: February 08, 2025
  • Published Date: February 23, 2025
  • EHL-2 is a compact, high-field spherical tokamak designed to explore the potential of an advanced p-11B nuclear fusion reactor. Due to its high plasma current and thermal energy, it is crucial to mitigate the impact associated with disruptions to ensure the safe operation of EHL-2. This paper evaluates the performance requirements of the disruption prediction system on EHL-2, with a particular focus on applying generalizable knowledge transfer from existing devices to future ones. Furthermore, the key characteristics of disruption mitigation strategies are analyzed, and their overall mitigation performance on EHL-2 is assessed. This insight provides valuable guidance for optimizing the engineering design of EHL-2 and identifying its optimal operational regime.

  • This study was supported by the ENN Group, the ENN Energy Research Institute and National Natural Science Foundation of China (No. 12205122). The authors gratefully acknowledge the ENN fusion team and collaborators for their valuable contributions to this endeavor.

  • [1]
    Liu M S et al 2024 Phys. Plasmas 31 062507 doi: 10.1063/5.0199112
    [2]
    Liang Y F et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad981a
    [3]
    Cai J Q et al 2024 Plasma Sci. Technol. 26 055102 doi: 10.1088/2058-6272/ad1571
    [4]
    ITER Physics Expert Group on Disruptions, Plasma Control and MHD and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251 doi: 10.1088/0029-5515/39/12/303
    [5]
    Loarte A et al 2004 Expected energy fluxes onto ITER plasma facing components during disruption thermal quenches from multi-machine data comparisons In: 20th IAEA Fusion Energy Conference Proceedings Vilamoura: IAEA 2004
    [6]
    Putvinski S et al 2010 Disruption mitigation in ITER In: 23rd IAEA Fusion Energy Conference Daejon: IAEA 2010
    [7]
    Hender T C et al 2007 Nucl. Fusion 47 S128 doi: 10.1088/0029-5515/47/6/S03
    [8]
    Sweeney R et al 2020 J. Plasma Phys. 86 865860507 doi: 10.1017/S0022377820001129
    [9]
    Chen Z Y et al 2013 Plasma Phys. Control. Fusion 55 035007 doi: 10.1088/0741-3335/55/3/035007
    [10]
    Plyusnin V V et al 2006 Nucl. Fusion 46 277 doi: 10.1088/0029-5515/46/2/011
    [11]
    Papp G et al 2016 Runaway electron generation and mitigation on the European medium sized tokamaks ASDEX Upgrade and TCV In: 26th IAEA Fusion Energy Conference Kyoto: IAEA 2016
    [12]
    Plyusnin V V et al 2018 Nucl. Fusion 58 016014 doi: 10.1088/1741-4326/aa8f05
    [13]
    Cannas B et al 2004 Nucl. Fusion 44 68 doi: 10.1088/0029-5515/44/1/008
    [14]
    Cannas B et al 2010 Nucl. Fusion 50 075004 doi: 10.1088/0029-5515/50/7/075004
    [15]
    Schuller F C 1995 Plasma Phys. Control. Fusion 37 A135 doi: 10.1088/0741-3335/37/11A/009
    [16]
    Churchill R M et al 2020 Phys. Plasmas 27 062510 doi: 10.1063/1.5144458
    [17]
    Zhu J X et al 2019 Comparison of recursive neural networks and random forests for disruption prediction on c-mod In: 61st Annual Meeting of the APS Division of Plasma Physics Fort Lauderdale: APS 2019: 118
    [18]
    Yoshino R 2003 Nucl. Fusion 43 1771 doi: 10.1088/0029-5515/43/12/021
    [19]
    Yoshino R 2005 Nucl. Fusion 45 1232 doi: 10.1088/0029-5515/45/11/003
    [20]
    Guo B H et al 2021 Plasma Phys. Control. Fusion 63 025008 doi: 10.1088/1361-6587/abcbab
    [21]
    Guo B H et al 2021 Plasma Phys. Control. Fusion 63 115007 doi: 10.1088/1361-6587/ac228b
    [22]
    Wang S Y et al 2016 Plasma Phys. Control. Fusion 58 055014 doi: 10.1088/0741-3335/58/5/055014
    [23]
    Zheng W et al 2018 Nucl. Fusion 58 056016 doi: 10.1088/1741-4326/aaad17
    [24]
    Shi Y J et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9e8f
    [25]
    Shi Y J et al 2022 Nucl. Fusion 62 086047 doi: 10.1088/1741-4326/ac71b6
    [26]
    De Vries P C et al 2016 Fusion Sci. Technol. 69 471 doi: 10.13182/FST15-176
    [27]
    Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526 doi: 10.1038/s41586-019-1116-4
    [28]
    Montes K J et al 2019 Nucl. Fusion 59 096015 doi: 10.1088/1741-4326/ab1df4
    [29]
    Murari A et al 2020 Nucl. Fusion 60 056003 doi: 10.1088/1741-4326/ab77a6
    [30]
    Zheng W et al 2023 Commun. Phys. 6 181 doi: 10.1038/s42005-023-01296-9
    [31]
    Zhu J X et al 2021 Nucl. Fusion 61 026007 doi: 10.1088/1741-4326/abc664
    [32]
    Chen B et al 2020 An Investigation of how Label Smoothing Affects Generalization arXiv: 2010.12648 (https://doi.org/10.48550/arXiv.2010.12648
    [33]
    Lehnen M et al 2011 Nucl. Fusion 51 123010 doi: 10.1088/0029-5515/51/12/123010
    [34]
    Yokoyama T et al 2023 Nucl. Fusion 63 126049 doi: 10.1088/1741-4326/ad0507
    [35]
    Granetz R S et al 2007 Nucl. Fusion 47 1086 doi: 10.1088/0029-5515/47/9/003
    [36]
    Pautasso G et al 2007 Nucl. Fusion 47 900 doi: 10.1088/0029-5515/47/8/023
    [37]
    Chen D L et al 2018 Nucl. Fusion 58 036003 doi: 10.1088/1741-4326/aaa139
    [38]
    Chen Z Y et al 2022 Plasma Sci. Technol. 24 124009 doi: 10.1088/2058-6272/aca272
    [39]
    Commaux N et al 2010 Nucl. Fusion 50 112001 doi: 10.1088/0029-5515/50/11/112001
    [40]
    Sheikh U A et al 2021 Nucl. Fusion 61 126043 doi: 10.1088/1741-4326/ac3191
    [41]
    Baylor L R et al 2021 Nucl. Fusion 61 106001 doi: 10.1088/1741-4326/ac1bc3
    [42]
    Xu H B et al 2019 Fusion Sci. Technol. 75 98 doi: 10.1080/15361055.2018.1554389
    [43]
    Li Y et al 2018 Rev. Sci. Instrum. 89 10K116 doi: 10.1063/1.5035186
    [44]
    Tang Y et al 2015 Phys. Lett. A 379 1043 doi: 10.1016/j.physleta.2015.01.029
    [45]
    Lehnen M et al 2015 J. Nucl. Mater. 463 39 doi: 10.1016/j.jnucmat.2014.10.075
    [46]
    Gouge M J et al 1989 Rev. Sci. Instrum. 60 570 doi: 10.1063/1.1140365
    [47]
    Hollmann E M et al 2015 Phys. Plasmas 22 021802 doi: 10.1063/1.4901251
    [48]
    Hollmann E M et al 2005 Nucl. Fusion 45 1046 doi: 10.1088/0029-5515/45/9/003
    [49]
    Reux C et al 2010 Nucl. Fusion 50 095006 doi: 10.1088/0029-5515/50/9/095006
    [50]
    Pautasso G et al 2009 Plasma Phys. Control. Fusion 51 124056 doi: 10.1088/0741-3335/51/12/124056
    [51]
    Albanese R et al 2015 Fusion Eng. Des. 94 7 doi: 10.1016/j.fusengdes.2015.02.034
    [52]
    Hollmann E M et al 2010 Phys. Plasmas 17 056117 doi: 10.1063/1.3309426
    [53]
    Lehnen M et al 2008 Phys. Rev. Lett. 100 255003 doi: 10.1103/PhysRevLett.100.255003
    [54]
    Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293 doi: 10.1088/0029-5515/40/7/302
    [55]
    Wang Y M et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9f27
  • Related Articles

    [1]Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
    [2]Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e
    [3]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [4]Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4
    [5]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [6]WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
    [7]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [8]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [9]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
    [10]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.

Catalog

    Figures(4)  /  Tables(6)

    Article views (27) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return