Citation: | Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1 |
[1] |
Mariotti D and Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001
|
[2] |
Nozaki T et al 2011 J. Phys. D: Appl. Phys. 44 174007
|
[3] |
Labidi S et al 2018 AIP Conf. Proc. 1925 020025
|
[4] |
Belmonte T et al 2011 J. Phys. D: Appl. Phys. 44 363001
|
[5] |
Fridman G et al 2008 Plasma Process. Polym. 5 503
|
[6] |
Shashurin A et al 2008 Appl. Phys. Lett. 93 181501
|
[7] |
Duarte S et al 2011 Phys. Plasmas 18 073503
|
[8] |
Kong M G et al 2009 New J. Phys. 11 115012
|
[9] |
Hazrati H D, Whittle J D and Vasilev K 2014 Plasma Process. Polym. 11 149
|
[10] |
Carton O et al 2012 Plasma Process. Polym. 9 984
|
[11] |
Nakahiro H et al 2012 Appl. Phys. Express 5 056201
|
[12] |
Reyes P G et al 2016 IEEE Trans. Plasma Sci. 44 2995
|
[13] |
Kato T et al 2003 Chem. Phys. Lett. 381 422
|
[14] |
Bundaleska N et al 2014 Int. J. Hydrog. Energy 39 5663
|
[15] |
Hrycak B et al 2015 Open Chem. 13 317
|
[16] |
Muthakarn P et al 2006 J. Phys. Chem. B 110 18299
|
[17] |
Sano N et al 2002 J. Appl. Phys. 92 2783
|
[18] |
Chen L W et al 2010 Phys. Plasmas 17 083502
|
[19] |
Kim D B et al 2011 Phys. Plasmas 18 043503
|
[20] |
Xian Y et al 2010 J. Appl. Phys. 107 063308
|
[21] |
Arnoult G et al 2008 Appl. Phys. Lett. 93 191507
|
[22] |
Zhou Y J et al 2013 Phys. Plasmas 20 113502
|
[23] |
Zhang Y T et al 2010 Appl. Phys. Lett. 97 141504
|
[24] |
Walsh J L et al 2008 Appl. Phys. Lett. 93 221505
|
[25] |
Eto H et al 2008 Appl. Phys. Lett. 93 221502
|
[26] |
Le P S et al 2009 Appl. Phys. Lett. 95 201501
|
[27] |
Reid R C, Prausnitz J M and Sherwood T K 1977 The Properties of Gases and Liquids (New York: McGraw-Hill)
|
[28] |
Levko D et al 2011 J. Phys. D: Appl. Phys. 44 145206
|
[29] |
Rejoub R et al 2003 J. Chem. Phys. 118 1756
|
[30] |
Marinov N M 1999 Int. J. Chem. Kinetics 31 183
|
[31] |
Park J, Xu Z F and Lin M C 2003 J. Chem. Phys. 118 9990
|
[32] |
Aders W K and Wagner H G 1973 Ber. Bunsenges Phys. Chem. 77 712
|
[33] |
Konnov A A 2008 Combust. Flame 152 507
|
[34] |
Dean A M and Westmoreland P R 1987 Int. J. Chem. Kinetics 19 207
|
[35] |
Tsang W 1987 J. Phys. Chem. Ref. Data 16 471
|
[36] |
Baulch D L et al 2005 J. Phys. Chem. Ref. Data 34 757
|
[37] |
Tsang W and Hampson R F 1986 J. Phys. Chem. Ref. Data 15 1087
|
[38] |
Yanguas-Gil A et al 2007 J. Appl. Phys. 101 103307
|
[39] |
Nikiforov A Y, Sarani A and Leys C 2011 Plasma Sources Sci. Technol. 20 015014
|
[40] |
Aumaille K et al 2000 Plasma Sources Sci. Technol. 9 331
|
[41] |
Sarani A, Nikiforov A Y and Leys C 2010 Phys. Plasma 17 063504
|
[42] |
Zhou Y J et al 2014 Plasma Sci. Technol. 16 99
|
[43] |
Li S Z et al 2010 Phys. Plasma 17 063506
|
[1] | Maria YOUNUS, N U REHMAN, M SHAFIQ, M NAEEM, M ZAKA-UL-ISLAM, M ZAKAULLAH. Evolution of plasma parameters in an Ar–N2/ He inductive plasma source with magnetic pole enhancement[J]. Plasma Science and Technology, 2017, 19(2): 25402-025402. DOI: 10.1088/2058-6272/19/2/025402 |
[2] | NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09 |
[3] | A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06 |
[4] | ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08 |
[5] | Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09 |
[6] | LIU Xuan(刘璇), GE Jie(葛婕), YANG Yi(杨轶), SONG Yixu(宋亦旭), REN Tianling(任天令). Feature Scale Simulation of PECVD of SiO 2 in SiH 4 /N 2 O Mixture[J]. Plasma Science and Technology, 2014, 16(4): 385-389. DOI: 10.1088/1009-0630/16/4/15 |
[7] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[8] | XIN Yu(信裕), DING Hongbin(丁洪斌). Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2[J]. Plasma Science and Technology, 2014, 16(2): 104-109. DOI: 10.1088/1009-0630/16/2/04 |
[9] | DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11 |
[10] | YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07 |
1. | Chen, S., Li, Z., Gao, Y. et al. Preparation of few-layer graphene by annealing Ni film with low carbon content deposited by direct current magnetron sputtering. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113421 | |
2. | Li, Q., Qi, Y., Cheng, W. et al. Combined effects of electron doping and surface polarity on the ferromagnetism in Gd implanted polar ZnO wafers. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2022.167319 | |
3. | Li, Q., Ying, M. Ion implantation induced d0 ferromagnetism in oxide semiconductors. Defect-Induced Magnetism in Oxide Semiconductors, 2023. DOI:10.1016/B978-0-323-90907-5.00019-1 | |
4. | Zhang, H., Liu, Y., Chen, Q. Research Progress on Optoelectronic Thin Films Deposited by HiPIMS: Discharge Characteristics and Parameter Adjustment | [HiPIMS 沉积光电薄膜研究进展:放电特性和参数调控]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 93-104. DOI:10.11933/j.issn.1007-9289.20211231004 | |
5. | Bai, X., Cai, Q., Zhang, X. Research Progress of Crystalline Thin Films by High Power Impulse Magnetron Sputtering at a Low Temperature | [高能脉冲磁控溅射低温制备晶态薄膜的研究进展]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 105-115. DOI:10.11933/j.issn.1007-9289.20211213002 | |
6. | Li, Q., Zhang, M., Yan, W. et al. Effects of electron doping on the d0 magnetism in N-implanted ZnO and ZnAlO films. Ceramics International, 2022, 48(14): 19831-19836. DOI:10.1016/j.ceramint.2022.03.258 | |
7. | Egbo, K.O., Chibueze, T.C., Raji, A.T. et al. Effects of acceptor doping and oxygen stoichiometry on the properties of sputter-deposited p-type rocksalt NixZn1-xO (0.3≤x≤1.0) alloys. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.164224 |