Advanced Search+
Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
Citation: Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1

OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet

Funds: The authors gratefully acknowledge the support provided by National Natural Science Foundation of China (No. 11165012), Project of Natural Science Foundation of GanSu province (No. 145RJZA159), China Postdoctoral Science Foundation funded project (Nos. 2011M501494 and 2012T50831).
More Information
  • Received Date: April 25, 2018
  • Ar/C2H5OH plasma jet is generated at atmospheric pressure by 33 MHz radio-frequency power source. This RF excitation frequencies which are higher than 13.56 MHz had rarely been used in atmospheric pressure plasma. The plasma characteristics of ethanol are investigated. The introduction of ethanol leads to the generation of four excited carbonaceous species C, CN, CH and C2 in plasma, respectively. Optical emission intensities of four carbonaceous species were strengthened with ethanol content increasing in the range of 0-4600 ppm. The ethanol content increase results in all the Ar spectra lines decrease. The reason is that the electron temperature decreases when ethanol content is high. The emission intensity ratios of C/C2, CN/C2 and CH/C2 decrease with the increase of ethanol content, showing that the relative amount of C2 is increasing by increasing the ethanol flow. The emission intensity ratios of excited species did not change much with the increase of RF power in stable discharge mode.
  • [1]
    Mariotti D and Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001
    [2]
    Nozaki T et al 2011 J. Phys. D: Appl. Phys. 44 174007
    [3]
    Labidi S et al 2018 AIP Conf. Proc. 1925 020025
    [4]
    Belmonte T et al 2011 J. Phys. D: Appl. Phys. 44 363001
    [5]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [6]
    Shashurin A et al 2008 Appl. Phys. Lett. 93 181501
    [7]
    Duarte S et al 2011 Phys. Plasmas 18 073503
    [8]
    Kong M G et al 2009 New J. Phys. 11 115012
    [9]
    Hazrati H D, Whittle J D and Vasilev K 2014 Plasma Process. Polym. 11 149
    [10]
    Carton O et al 2012 Plasma Process. Polym. 9 984
    [11]
    Nakahiro H et al 2012 Appl. Phys. Express 5 056201
    [12]
    Reyes P G et al 2016 IEEE Trans. Plasma Sci. 44 2995
    [13]
    Kato T et al 2003 Chem. Phys. Lett. 381 422
    [14]
    Bundaleska N et al 2014 Int. J. Hydrog. Energy 39 5663
    [15]
    Hrycak B et al 2015 Open Chem. 13 317
    [16]
    Muthakarn P et al 2006 J. Phys. Chem. B 110 18299
    [17]
    Sano N et al 2002 J. Appl. Phys. 92 2783
    [18]
    Chen L W et al 2010 Phys. Plasmas 17 083502
    [19]
    Kim D B et al 2011 Phys. Plasmas 18 043503
    [20]
    Xian Y et al 2010 J. Appl. Phys. 107 063308
    [21]
    Arnoult G et al 2008 Appl. Phys. Lett. 93 191507
    [22]
    Zhou Y J et al 2013 Phys. Plasmas 20 113502
    [23]
    Zhang Y T et al 2010 Appl. Phys. Lett. 97 141504
    [24]
    Walsh J L et al 2008 Appl. Phys. Lett. 93 221505
    [25]
    Eto H et al 2008 Appl. Phys. Lett. 93 221502
    [26]
    Le P S et al 2009 Appl. Phys. Lett. 95 201501
    [27]
    Reid R C, Prausnitz J M and Sherwood T K 1977 The Properties of Gases and Liquids (New York: McGraw-Hill)
    [28]
    Levko D et al 2011 J. Phys. D: Appl. Phys. 44 145206
    [29]
    Rejoub R et al 2003 J. Chem. Phys. 118 1756
    [30]
    Marinov N M 1999 Int. J. Chem. Kinetics 31 183
    [31]
    Park J, Xu Z F and Lin M C 2003 J. Chem. Phys. 118 9990
    [32]
    Aders W K and Wagner H G 1973 Ber. Bunsenges Phys. Chem. 77 712
    [33]
    Konnov A A 2008 Combust. Flame 152 507
    [34]
    Dean A M and Westmoreland P R 1987 Int. J. Chem. Kinetics 19 207
    [35]
    Tsang W 1987 J. Phys. Chem. Ref. Data 16 471
    [36]
    Baulch D L et al 2005 J. Phys. Chem. Ref. Data 34 757
    [37]
    Tsang W and Hampson R F 1986 J. Phys. Chem. Ref. Data 15 1087
    [38]
    Yanguas-Gil A et al 2007 J. Appl. Phys. 101 103307
    [39]
    Nikiforov A Y, Sarani A and Leys C 2011 Plasma Sources Sci. Technol. 20 015014
    [40]
    Aumaille K et al 2000 Plasma Sources Sci. Technol. 9 331
    [41]
    Sarani A, Nikiforov A Y and Leys C 2010 Phys. Plasma 17 063504
    [42]
    Zhou Y J et al 2014 Plasma Sci. Technol. 16 99
    [43]
    Li S Z et al 2010 Phys. Plasma 17 063506
  • Related Articles

    [1]Maria YOUNUS, N U REHMAN, M SHAFIQ, M NAEEM, M ZAKA-UL-ISLAM, M ZAKAULLAH. Evolution of plasma parameters in an Ar–N2/ He inductive plasma source with magnetic pole enhancement[J]. Plasma Science and Technology, 2017, 19(2): 25402-025402. DOI: 10.1088/2058-6272/19/2/025402
    [2]NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09
    [3]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [4]ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08
    [5]Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
    [6]LIU Xuan(刘璇), GE Jie(葛婕), YANG Yi(杨轶), SONG Yixu(宋亦旭), REN Tianling(任天令). Feature Scale Simulation of PECVD of SiO 2 in SiH 4 /N 2 O Mixture[J]. Plasma Science and Technology, 2014, 16(4): 385-389. DOI: 10.1088/1009-0630/16/4/15
    [7]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [8]XIN Yu(信裕), DING Hongbin(丁洪斌). Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2[J]. Plasma Science and Technology, 2014, 16(2): 104-109. DOI: 10.1088/1009-0630/16/2/04
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
  • Cited by

    Periodical cited type(7)

    1. Chen, S., Li, Z., Gao, Y. et al. Preparation of few-layer graphene by annealing Ni film with low carbon content deposited by direct current magnetron sputtering. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113421
    2. Li, Q., Qi, Y., Cheng, W. et al. Combined effects of electron doping and surface polarity on the ferromagnetism in Gd implanted polar ZnO wafers. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2022.167319
    3. Li, Q., Ying, M. Ion implantation induced d0 ferromagnetism in oxide semiconductors. Defect-Induced Magnetism in Oxide Semiconductors, 2023. DOI:10.1016/B978-0-323-90907-5.00019-1
    4. Zhang, H., Liu, Y., Chen, Q. Research Progress on Optoelectronic Thin Films Deposited by HiPIMS: Discharge Characteristics and Parameter Adjustment | [HiPIMS 沉积光电薄膜研究进展:放电特性和参数调控]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 93-104. DOI:10.11933/j.issn.1007-9289.20211231004
    5. Bai, X., Cai, Q., Zhang, X. Research Progress of Crystalline Thin Films by High Power Impulse Magnetron Sputtering at a Low Temperature | [高能脉冲磁控溅射低温制备晶态薄膜的研究进展]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 105-115. DOI:10.11933/j.issn.1007-9289.20211213002
    6. Li, Q., Zhang, M., Yan, W. et al. Effects of electron doping on the d0 magnetism in N-implanted ZnO and ZnAlO films. Ceramics International, 2022, 48(14): 19831-19836. DOI:10.1016/j.ceramint.2022.03.258
    7. Egbo, K.O., Chibueze, T.C., Raji, A.T. et al. Effects of acceptor doping and oxygen stoichiometry on the properties of sputter-deposited p-type rocksalt NixZn1-xO (0.3≤x≤1.0) alloys. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.164224

    Other cited types(0)

Catalog

    Article views (154) PDF downloads (245) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return