Advanced Search+
Jinxia ZHU (竹锦霞), Yipo ZHANG (张轶泼), Yunbo DONG (董云波), HL-A Team. Characterization of plasma current quench during disruptions at HL-2A[J]. Plasma Science and Technology, 2017, 19(5): 55101-055101. DOI: 10.1088/2058-6272/aa5ff2
Citation: Jinxia ZHU (竹锦霞), Yipo ZHANG (张轶泼), Yunbo DONG (董云波), HL-A Team. Characterization of plasma current quench during disruptions at HL-2A[J]. Plasma Science and Technology, 2017, 19(5): 55101-055101. DOI: 10.1088/2058-6272/aa5ff2

Characterization of plasma current quench during disruptions at HL-2A

Funds: This work was partially supported by National Natural Science Foundation of China (No. 11375004) and by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2014GB109003).
More Information
  • Received Date: January 04, 2017
  • The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor con?guration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.
  • [1]
    Smith H et al 2006 Phys. Plasmas 13 102502
    [2]
    Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293
    [3]
    Riccardo V, Barabaschi P and Sugihara M 2005 Plasma Phys. Control. Fusion 47 117
    [4]
    Sugihara M et al 2004 20th IAEA Fusion Energy Conf. Vilamoura (Portugal)
    [5]
    Rosenbluth M N and Putvinski S V 1997 Nucl. Fusion 37 1355
    [6]
    ITER Physics Basis 1999 Nucl. Fusion 39 2137
    [7]
    Wang B et al 2016 Plasma Sci. Technol. 18 1162
    [8]
    Zhang Y P et al 2012 Phys. Plasmas 19 032510
    [9]
    Izzo V A, Parks P B and Lao L L 2009 Plasma Phys. Control. Fusion 51 105004
    [10]
    Zhang Y et al 2012 Phys. Scr. 86 025501
    [11]
    Gerhardt S P, Menard J E and NSTX Team 2009 Nucl. Fusion 49 025005
    [12]
    Kawano Y et al 2003 Proc. of the 30th EPS Conf. on Controlled Fusion and Plasma Physics (St. Petersburg)
    [13]
    Sugihara et al 2003 J. Plasma. Fusion Res 79 706
    [14]
    Li J et al 2013 Plasma Sci and Technol. 15 1241
  • Related Articles

    [1]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [2]Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Farideh HONARY, Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Threshold of parametric instability in the ionospheric heating experiments[J]. Plasma Science and Technology, 2018, 20(11): 115301. DOI: 10.1088/2058-6272/aac71d
    [3]Zhengwei YAO (姚征伟), Lihong CHENG (成丽红), Rongan TANG (唐荣安), Jukui XUE (薛具奎). Wakefield generation by chirped super- Gaussian laser pulse in inhomogeneous plasma[J]. Plasma Science and Technology, 2018, 20(11): 115002. DOI: 10.1088/2058-6272/aacbbf
    [4]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Guangye XU (徐广野), Xiaoning ZHANG (张晓宁), Shu LIN (林澍), Binhao JIANG (江滨浩). Experimental and numerical studies on the receiving gain enhancement modulated by a sub-wavelength plasma layer[J]. Plasma Science and Technology, 2018, 20(9): 95504-095504. DOI: 10.1088/2058-6272/aac430
    [5]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [6]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [7]Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5
    [8]WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09
    [9]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03
    [10]M. HANIF, M. SALIK, M. A. BAIG. Spectroscopic Studies of the Laser Produced Lead Plasma[J]. Plasma Science and Technology, 2011, 13(2): 129-134.
  • Cited by

    Periodical cited type(6)

    1. Fikry, M., Alhijry, I.A., Aboulfotouh, A.M. et al. Feasibility of Using Boltzmann Plots to Evaluate the Stark Broadening Parameters of Cu(I) Lines. Applied Spectroscopy, 2021, 75(10): 1288-1295. DOI:10.1177/00037028211013371
    2. Tang, Z., Liu, K., Hao, Z. et al. The validity of nanoparticle enhanced molecular laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 1034-1040. DOI:10.1039/d0ja00528b
    3. Matsumoto, A., Shimazu, Y., Yoshizumi, S. et al. Laser-induced breakdown spectroscopy using a porous silicon substrate produced by metal-assisted etching: Microanalysis of a strontium chloride aqueous solution as an example. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2239-2247. DOI:10.1039/d0ja00144a
    4. El Sherbini, A.M., El Farash, A.H., El Sherbini, T.M. et al. Opacity corrections for resonance silver lines in nano-material laser-induced plasma. Atoms, 2019, 7(3): 73. DOI:10.3390/ATOMS7030073
    5. Parigger, C.G., Sherbini, A.M.E.L., Splinter, R. Selected laser-induced plasma spectroscopy: From medical to astrophysical applications. Journal of Physics: Conference Series, 2019, 1253(1): 012001. DOI:10.1088/1742-6596/1253/1/012001
    6. Wang, Q., Ma, L. Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency. Plasma Science and Technology, 2019, 21(10): 105001. DOI:10.1088/2058-6272/ab307a

    Other cited types(0)

Catalog

    Article views (235) PDF downloads (562) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return