Advanced Search+
Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
Citation: Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1

Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air

Funds: We acknowledge support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11674124); Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC); and Fundamental Research Project of Chinese State Key Laboratory of Laser Interaction with Matter (Grant No. SKLLIM1605).
More Information
  • Received Date: July 29, 2018
  • In double-pulse laser-induced breakdown spectroscopy (DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na (I) lines (589.0 nm and 589.6 nm) and one Ca (I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature (22 °C) and three higher initial sample temperatures (Ts =100 °C, 200°C, and 250 °C). The inter-pulse delay time ranges from -250 ps to 250 ps. The inter-pulse delay time and the sample temperature strongly influence the spectral intensity, and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0ps (single-pulse LIBS), the enhancement ratio is approximately 2.5 at Ts=200 °C compared with that obtained at Ts=22 °C. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at Ts=200 °C compared with that obtained at Ts=22 °C. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.
  • [1]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Appl. Phys. B 108 867
    [2]
    Anglos D, Couris S and Fotakis C 1997 Appl. Spectrosc. 51 1025
    [3]
    Pandhija S et al 2010 Appl. Phys. B 98 231
    [4]
    Knight A K et al 2000 Appl. Spectrosc. 54 331
    [5]
    Baudelet M et al 2006 J. Appl. Phys. 99 084701
    [6]
    Burakov V et al 2008 Spectrochim. Acta B 63 19
    [7]
    Tavassoli S H and Gragossian A 2009 Opt. Laser Technol. 41 481
    [8]
    Tavassoli S H and Khalaji M 2008 J. Appl. Phys. 103 083118
    [9]
    Semerok A and Dutouquet C 2004 Thin Solid Films 453–454 501
    [10]
    Rashid B et al 2011 Phys. Plasmas 18 073301
    [11]
    Singh K S and Sharma A K 2016 Phys. Plasmas 23 122104
    [12]
    Pandey P K and Thareja R K 2013 Phys. Plasmas 20 022117
    [13]
    Hou Z Y et al 2013 Opt. Express 21 15974
    [14]
    Popov A M, Colao F and Fantoni R 2010 J. Anal. At. Spectrom. 25 837
    [15]
    Wang Y et al 2016 Phys. Plasmas 23 113105
    [16]
    Zhou W D et al 2013 J. Anal. At. Spectrom. 28 702
    [17]
    Liu L et al 2015 Opt. Express 23 15047
    [18]
    Liu L et al 2014 Opt. Express 22 7686
    [19]
    Wang Y et al 2017 Phys. Plasmas 24 013301
    [20]
    De Giacomo A et al 2013 Anal. Chem. 85 10180
    [21]
    Aguirre M A et al 2013 Spectrochim. Acta B 79–80 88
    [22]
    Goueguel C et al 2010 J. Anal. At. Spectrom. 25 635
    [23]
    Benedetti P A et al 2005 Spectrochim. Acta B 60 1392
    [24]
    He Y et al 2018 Sensors 18 1526
    [25]
    ?tvrtní?ková T et al 2008 Spectrochim. Acta B 63 42
    [26]
    Scott R and Strasheim A 1970 Spectrochim. Acta B 25 311
    [27]
    Cremers D A et al 1984 Appl. Spectrosc. 38 721
    [28]
    Singha S, Hu Z and Cordon R J 2008 J. Appl. Phys. 104 113520
    [29]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40
    [30]
    Pi?on V et al 2008 Spectrochim. Acta B 63 1006
    [31]
    Penczak J et al 2014 Spectrochim. Acta B 97 34
    [32]
    Mukamel S et al 1999 Acc. Chem. Res. 32 145
    [33]
    Chen A M et al 2010 Appl. Surf. Sci. 257 1678
    [34]
    Li S C et al 2015 Appl. Surf. Sci. 355 681
    [35]
    Qi Y et al 2014 Appl. Surf. Sci. 317 252
    [36]
    No?l S, Axente E and Hermann J 2009 Appl. Surf. Sci. 255 9738
    [37]
    No?l S and Hermann J 2009 Appl. Phys. Lett. 94 053120
    [38]
    Harilal S S, Diwakar P K and Hassanein A 2013 Appl. Phys. Lett. 103 041102
    [39]
    Qi H X et al 2014 J. Anal. At. Spectrom. 29 1105
    [40]
    Chen A M et al 2013 Phys. Plasmas 20 103110
    [41]
    Guo J et al 2012 Optics Commun. 285 1895
    [42]
    Zhang D et al 2017 Opt. Laser Technol. 96 117
    [43]
    Ahamer C M and Pedarnig J D 2018 Spectrochim. Acta B 148 23
    [44]
    Cao Z T et al 2018 Spectrochim. Acta B 141 63
    [45]
    Chen A M et al 2015 Opt. Express 23 24648
    [46]
    Liu X et al 2013 Opt. Express 21 A704
    [47]
    Schiffern J T, Doerr D W and Alexander D R 2007 Spectrochim. Acta B 62 1412
    [48]
    Hou Z Y et al 2014 Opt. Express 22 12909
    [49]
    Guo L B et al 2011 Opt. Express 19 14067
    [50]
    Guo L B et al 2012 Opt. Express 20 1436
    [51]
    Su X J, Zhou W D and Qian H G 2014 J. Anal. At. Spectrom. 29 2356
    [52]
    Scaffidi J et al 2004 Appl. Opt. 43 2786
    [53]
    Darbani S M R et al 2014 J. Eur. Opt. Soc. Rapid Publ. 9 14058
    [54]
    Palanco S et al 1999 J. Anal. At. Spectrom. 14 1883
    [55]
    Yang F et al 2017 Opt. Laser Technol. 93 194
    [56]
    Hanson C, Phongikaroon S and Scott J R 2014 Spectrochim. Acta B 97 79
    [57]
    Franklin S R and Thareja R K 2004 Appl. Surf. Sci. 222 293
    [58]
    Zhigilei L V et al 2003 Chem. Rev. 103 321
    [59]
    Silfvast W T 1996 Laser Fundamentals (Cambridge: Cambridge University Press)
    [60]
    Alfarraj B A et al 2017 Appl. Spectrosc. 71 640
    [61]
    Hou J J et al 2017 J. Anal. At. Spectrom. 32 1519
    [62]
    Yi R X et al 2016 J. Anal. At. Spectrom. 31 961
    [63]
    Li J M et al 2015 Opt. Lett. 40 5224
    [64]
    Thorstensen J and Foss S E 2012 J. Appl. Phys. 112 103514
    [65]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 497
    [66]
    Eschlb?ck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
    [67]
    Gautier C et al 2005 Spectrochim. Acta B 60 265
    [68]
    D?ring S et al 2013 Appl. Phys. A 112 623
    [69]
    Cristoforetti G et al 2004 Spectrochim. Acta B 59 1907
    [70]
    St-Onge L, Detalle V and Sabsabi M 2002 Spectrochim. Acta B 57 121
    [71]
    Sattmann R, Sturm V and Noll R 1995 J. Phys. D: Appl. Phys. 28 2181
  • Related Articles

    [1]Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Miao LIU (刘淼), Yitong LIU (刘奕彤), Qingxue LI (李庆雪), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Xun GAO (高勋), Mingxing JIN (金明星). Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(4): 45504-045504. DOI: 10.1088/2058-6272/abeb5d
    [2]Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6
    [3]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [4]WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09
    [5]SHEN Jie (沈洁), YANG Zhengcai (杨正才), LIU Xiaoliang (刘小亮), SHI Yanchao (史彦超), ZHAO Peixi (赵培茜), SUN Shaohua (孙少华), HU Bitao (胡碧涛). Analysis of Enhanced Laser-Induced Breakdown Spectroscopy with Double Femtosecond Laser Pulses[J]. Plasma Science and Technology, 2015, 17(2): 147-152. DOI: 10.1088/1009-0630/17/2/09
    [6]LI Xibao(李喜宝), LU Jinshan(卢金山), LUO Junming(罗军明), ZHANG Jianjun(张建军), OU Junfei(欧军飞), XU Haitao(徐海涛). Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma[J]. Plasma Science and Technology, 2014, 16(10): 964-968. DOI: 10.1088/1009-0630/16/10/11
    [7]LIU Xiaoliang(刘小亮), CAO Yu(曹瑜), WANG Xiaoshan(王小山), LIU Zuoye(刘作业), GUO Zeqin(郭泽钦), SHI Yanchao(史彦超), SUN Shaohua(孙少华), LI Yuhong(李玉红), HU Bitao(胡碧涛). Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown[J]. Plasma Science and Technology, 2014, 16(9): 815-820. DOI: 10.1088/1009-0630/16/9/02
    [8]SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟), WEN Guanhong(温冠宏). A Comparative Study of the Laser Induced Breakdown Spectroscopy in Single- and Collinear Double-Pulse Laser Geometry[J]. Plasma Science and Technology, 2014, 16(4): 374-379. DOI: 10.1088/1009-0630/16/4/13
    [9]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02
    [10]LIU Feng(刘峰), LIN Xiaoxuan(林晓宣), LIU Bicheng(刘必成), DING Wenjun (丁文君), DU Fei(杜飞), LI Yutong(李玉同), MA Jinglong(马景龙), LIU Xiaolong (刘晓龙), et al. Transmission Degradation of Femtosecond Laser Pulses in Opened Cone Targets[J]. Plasma Science and Technology, 2012, 14(1): 24-27. DOI: 10.1088/1009-0630/14/1/06
  • Cited by

    Periodical cited type(12)

    1. Rizwan, M., Afgan, M.S., Saleem, S. et al. Double Pulse laser-induced breakdown spectroscopy (DP-LIBS): A Comprehensive technique Review. Spectrochimica Acta - Part B Atomic Spectroscopy, 2025. DOI:10.1016/j.sab.2025.107168
    2. Wang, Y., Gao, H., Hong, Y. et al. Influence of distance from lens to sample surface on spectral sensitivity of femtosecond laser-induced breakdown spectroscopy with NaCl water film. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.964140
    3. Wang, Q., Chen, A., Liu, Y. et al. Comparison of emission signals for femtosecond and nanosecond laser-ablated Cu plasmas by changing the distance from focusing-lens to target-surface at different target temperatures. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106302
    4. Wang, Q., Qi, H., Zeng, X. et al. Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas. Plasma Science and Technology, 2021, 23(11): 115504. DOI:10.1088/2058-6272/ac183b
    5. Liu, M., Chen, A., Chen, Y. et al. Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(7): 075501. DOI:10.1088/2058-6272/abf997
    6. Qi, W., Wang, Q., Shao, J. et al. Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas. Plasma Science and Technology, 2021, 23(4): 045501. DOI:10.1088/2058-6272/abe52c
    7. Wang, Y., Wang, Q., Chen, A. et al. Influence of sample temperature on nanosecond laser-induced Cu plasma spectra. Optik, 2021. DOI:10.1016/j.ijleo.2021.166338
    8. Li, Q., Chen, A., Zhang, D. et al. Time-resolved electron temperature and density of spark discharge assisted femtosecond laser-induced breakdown spectroscopy. Optik, 2021. DOI:10.1016/j.ijleo.2020.165812
    9. Shao, J., Guo, J., Wang, Q. et al. Influence of distance between focusing lens and sample surface on femtosecond laser-induced Cu plasma. Optik, 2020. DOI:10.1016/j.ijleo.2020.165137
    10. Yang, X., Chen, A., Li, S. et al. Effect of Parallel Plate Constraint on CN Molecular Spectra in Laser-Induced PMMA Plasma | [平行板约束对激光诱导PMMA等离子体中CN分子光谱的影响]. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47(8): 0811002. DOI:10.3788/CJL202047.0811002
    11. Yang, L., Yang, L., Liu, M. et al. Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy. Chinese Physics B, 2020, 29(6): 065203. DOI:10.1088/1674-1056/ab84dc
    12. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (155) PDF downloads (206) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return