Advanced Search+
LIU Xiaoliang(刘小亮), CAO Yu(曹瑜), WANG Xiaoshan(王小山), LIU Zuoye(刘作业), GUO Zeqin(郭泽钦), SHI Yanchao(史彦超), SUN Shaohua(孙少华), LI Yuhong(李玉红), HU Bitao(胡碧涛). Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown[J]. Plasma Science and Technology, 2014, 16(9): 815-820. DOI: 10.1088/1009-0630/16/9/02
Citation: LIU Xiaoliang(刘小亮), CAO Yu(曹瑜), WANG Xiaoshan(王小山), LIU Zuoye(刘作业), GUO Zeqin(郭泽钦), SHI Yanchao(史彦超), SUN Shaohua(孙少华), LI Yuhong(李玉红), HU Bitao(胡碧涛). Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown[J]. Plasma Science and Technology, 2014, 16(9): 815-820. DOI: 10.1088/1009-0630/16/9/02

Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown

Funds: supported by National Natural Science Foundation of China (Nos. 11135002, 11075069, 91026021 and 11075068) and the Scholarship Award for Excellent Doctoral Student Granted by the Ministry of Education of China
More Information
  • Received Date: August 04, 2013
  • Single-pulse and double-pulse optical emission spectroscopy (OES) analyses were carried out in air by using ultrashort laser pulses at atmospheric pressure. The aim of this work is to use spectroscopic methods to analyze the early phase of laser-induced plasma after the femtosecond laser pulse. The temporal behavior of emission spectra of air plasma has been characterized. In comparison with the single-pulse scheme, the plasma emission obtained in the double-pulse scheme presents a more intense continuum along with several additional ionic lines. As only one line is available in the single-pulse scheme, the plasma temperature measurements were performed using only the relative line-to-continuum intensity ratio method, whereas the relative line-to-line intensity ratio method and the relative line-to-continuum intensity ratio method were used simultaneously to estimate the electron temperature in the double-pulse scheme. The results reveal that the temperature values obtained by the two methods in the double-pulse scheme agree. Moreover, this shows that the relative line-to-continuum intensity ratio method is suitable for early phase of laser-induced plasma diagnostics. The electron number density was estimated using the Stark broadening method. In the early phase of laser-induced plasma, the temporal evolution of the electron number density exhibits a power law decrease with delay time.
  • 1 Strickland D, Mourou G. 1985, Opt. Commun., 56:219
    2 Margetic V, Pakulev A, Stockhaus A, et al. 2000, Spectrochim. Acta Part B, 55: 1771
    3 Drogoff B L, Vidal F, Kaenel Y V, et al. 2001, J. Appl.Phys., 89: 8247
    4 Chikov B N, Momma C, Nolte S, et al. 1996, Appl.Phys. A, 63: 109
    5 Semerok A, Chal ard C, Detalle V, et al. 1999, Appl.Surf. Sci., 138/139: 311
    6 Adrain R S. 1984, J. Phys. D: Appl. Phys., 17: 1915
    7 Sun S H, Liu X L, Liu Z Y, et al. 2013, Chin. Phys.Lett., 30: 045202
    8 Nakamura S, Wagatsuma K. 2007, Spectrochim. Acta Part B, 62: 1303
    9 Piñnon V, Fotakis C, Nicolas G, et al. 2008, Spectrochim. Acta Part B, 63: 1006
    10 Mateo M P, Piñnon V, Anglos D, et al. 2012, Spectrochim. Acta Part B, 74-75: 18
    11 Liu H C, Mao X L, Yoo J H, et al. 1999, Spectrochim.Acta Part B, 54: 1607
    12 Zeng X Z, Mao S S, Liu C Y, et al. 2003, Spectrochim.Acta Part B, 58: 867
    13 Giacomo A D, Dell'Aglio M, Santagata A, et al. 2005,Spectrochim. Acta Part B, 60: 935
    14 Liu X L, Sun S H,Wang X S, et al. 2013, Opt. Express,21: A704
    15 Drogoff B L, Margot J, Chaker M, et al. 2001, Spectrochim. Acta Part B, 56: 987
    16 Ying M J, Xia Y Y, Sun Y M, et al. 2003, Laser and Particle Beams, 21: 97
    17 Delcroix A, Volonte S. 1973, J. Phys. B: Molec. Phys.,6: L4
    18 Bastiaans G J, Mangold R A. 1985, Spectrochim.Acta., 40B: 885
    19 Camacho J J, Diaz L, Santos M, et al. 2010, J. Appl.Phys., 107: 083306
    20 Spitzer L. 1962, Physics of Fully Ionized Gases. Interscience, New York
    21 Griem H R. 1974, Spectral Line Broadening by Plasmas. Academic Press, New York
    22 NIST Atomic Spectra Database online at http://www.physics. nist.gov/PhysRefData/ASD/index.html. 2008
    23 Befeki G. 1976, Principles of Laser Plasmas. Wiley Interscience, New York
    24 Griem H R. 1997, Principles of Plasma Spectroscopy. Cambridge University Press, United Kingdom
    25 Wolf P J. 1992, J. Appl. Phys., 72: 1280
    26 Hunddelestone R H, Leonard S L. 1965, Plasma Diagnostic Techniques. Academic Press, London
  • Related Articles

    [1]Junfeng RONG (荣俊锋), Kaixun ZHU (朱凯勋), Minggong CHEN (陈明功). Study on purification technology of polyacrylamide wastewater by non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(5): 54008-054008. DOI: 10.1088/2058-6272/aafceb
    [2]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [3]Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9
    [4]Shuangyan XU (徐双艳), Jinsheng CAI (蔡晋生), Yongsheng LIAN (练永生). Investigation of nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures[J]. Plasma Science and Technology, 2017, 19(9): 95504-095504. DOI: 10.1088/2058-6272/aa6f59
    [5]PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05
    [6]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [7]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [8]ZHENG Dianfeng (郑殿峰). The Advantages of Non-Thermal Plasma for Detonation Initiation Compared with Spark Plug[J]. Plasma Science and Technology, 2016, 18(2): 162-167. DOI: 10.1088/1009-0630/18/2/11
    [9]Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05
    [10]SHAO Xianjun, ZHANG Guanjun, KAWADA Masatake, MA Yue, LI Yaxi. Simulational study on multi-pulse phenomena of atmospheric pressure argon dielectric barrier discharge[J]. Plasma Science and Technology, 2011, 13(6): 708-713.

Catalog

    Article views (170) PDF downloads (1048) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return