Advanced Search+
Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9
Citation: Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9

Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration

Funds: This work was financially supported by National Natural Science Foundation of China (Project No. 51608468), the Natural Science Foundation of Hebei Province (Project Nos. B2015203303 and B2015203300), the China Postdoctoral Science Foundation (Project Nos. 2015M580216 and 2016M601285), the Youth Teacher Independent Research Program of Yanshan University (Project No. 15LGA013), and the Hebei Province Preferred Postdoctoral Science Foundation (B2016003019). In addition, the study was supported by the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering (MOE).
More Information
  • Received Date: October 17, 2017
  • A combined method of granular activated carbon (GAC) adsorption and bipolar pulse dielectric barrier discharge (DBD) plasma regeneration was employed to degrade phenol in water. After being saturated with phenol, the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters. The results showed that different peak voltages, air flow rates, and GAC content can affect phenol decomposition and its major degradation intermediates, such as catechol, hydroquinone, and benzoquinone. The higher voltage and air support were conducive to the removal of phenol, and the proper water moisture of the GAC was 20%. The amount of H2O2 on the GAC was quantitatively determined, and its laws of production were similar to phenol elimination. Under the optimized conditions, the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy, and the total removal of organic carbons achieved 50.4%. Also, a possible degradation mechanism was proposed based on the HPLC analysis. Meanwhile, the regeneration efficiency of the GAC was improved with the discharge treatment time, which attained 88.5% after 100 min of DBD processing.
  • [1]
    Saeed M and Ilyas M 2013 Appl. Catal. B 129 247
    [2]
    Rivera-Utrilla J et al 2011 J. Hazard. Mater. 187 1
    [3]
    Zhang Q et al 2018 J. Hazard. Mater. 342 732
    [4]
    Tang S et al 2013 Carbon 53 380
    [5]
    Huang H et al 2017 J. Clean. Prod. 168 338
    [6]
    Berenguer R et al 2010 Energ. Fuel. 24 3366
    [7]
    Yagmur E et al 2017 J. Clean. Prod. 149 1109
    [8]
    Zhan J et al 2016 Carbon 101 399
    [9]
    He X et al 2017 J. Hazard. Mater. 326 101
    [10]
    Gu J et al 2017 ACS Appl. Mater. Inter. 9 8891
    [11]
    Xu D et al 2017 Plasma Sci. Technol. 19 64004
    [12]
    Jiang N et al 2016 Appl. Catal. B 184 355
    [13]
    Xing R et al 2017 ACS Sustain. Chem. Eng. 5 4948
    [14]
    Xiao Z et al 2017 Plasma Sci. Technol. 19 64009
    [15]
    Wang H et al 2017 Plasma Sci. Technol. 19 15504
    [16]
    Rida Galaly A and Van Oost G 2017 Plasma Sci. Technol. 19 105503
    [17]
    Ma T et al 2016 Plasma Sci. Technol. 18 686
    [18]
    Tang S et al 2012 Sep. Purif. Technol. 95 73
    [19]
    Tang S et al 2012 Thin Solid Films 521 257
    [20]
    Hu J et al 2016 Plasma Sci. Technol. 18 254
    [21]
    Sellers R M 1980 Analyst 105 950
    [22]
    Tang S et al 2017 J. Taiwan Inst. Chem E 78 178
    [23]
    Locke B R et al 2006 Ind. Eng. Chem. Res. 45 882
    [24]
    Shang K et al 2017 Plasma Sci. Technol. 19 64017
    [25]
    Wang T et al 2016 Water Res. 89 28
    [26]
    Wang T et al 2016 J. Hazard. Mater. 320 539
    [27]
    Locke B R and Thagard S M 2012 Plasma Chem. Plasma P 32 875
    [28]
    Tang S et al 2018 Chem. Eng. J. 337 446
    [29]
    Sun B et al 1999 J. Phys. D Appl. Phys. 32 1908
    [30]
    Wandell R J and Locke B R 2014 Ind. Eng. Chem. Res. 53 609
    [31]
    Yan Z et al 2017 Plasma Sci. Technol. 19 35501
    [32]
    Alvarez P M et al 2006 Carbon 44 3102
    [33]
    Tang S et al 2016 Environ. Sci. Pollut. R 23 18800
    [34]
    Biniak S et al 1997 Carbon 35 1799
    [35]
    Biniak S et al 1999 Langmuir 15 6117
    [36]
    Gu J et al 2017 Chem. Eng. J. 324 35
    [37]
    Domingo-Garcia M et al 2000 J. Colloid Interf. Sci. 222 233
    [38]
    Lukes P and Locke B R 2005 Ind. Eng. Chem. Res. 44 2921
    [39]
    Mercado-Cabrera A et al 2017 Plasma Sci. Technol. 19 75501
    [40]
    Qu G Z et al 2009 J. Hazard. Mater. 172 472
    [41]
    Salvador F et al 2015 Micropor. Mesopor. Mat. 202 259
    [42]
    Salvador F et al 2015 Micropor. Mesopor. Mat. 202 277
  • Related Articles

    [1]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [2]Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
    [3]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [4]Peiyu JI (季佩宇), Jun YU (於俊), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Yan YANG (杨燕), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(2): 25505-025505. DOI: 10.1088/2058-6272/aa94bd
    [5]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [6]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [7]ZHAO Guoming(赵国明), SUN Qian(孙倩), ZHAO Shuxia(赵书霞), GAO Shuxia(高书侠), ZHANG Lianzhu(张连珠). The Effect of Gas Flow Rate on Radio-Frequency Hollow Cathode Discharge Characteristics[J]. Plasma Science and Technology, 2014, 16(7): 669-676. DOI: 10.1088/1009-0630/16/7/07
    [8]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [9]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [10]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
  • Cited by

    Periodical cited type(8)

    1. Xiao, W., Li, Y., Zhang, Y. et al. Recent Development of Fibrous Materials for Electrocatalytic Water Splitting. Applied Energy, 2025. DOI:10.1016/j.apenergy.2025.125809
    2. Wang, S., Wang, Y., Gao, M. et al. Aging Effect of Plasma-Treated Carbon Fiber Surface: From an Engineering Point. Coatings, 2024, 14(1): 80. DOI:10.3390/coatings14010080
    3. Li, J., Yuan, L., Wu, Z. et al. Synergetic surface modification of 3D braided carbon fiber-reinforced composites for enhancing mechanical strength. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.158189
    4. Sowmya, S., Vijaikanth, V. g-C3N4/Chlorocobaloxime Nanocomposites as Multifunctional Electrocatalysts for Water Splitting and Energy Storage. ACS Omega, 2023, 8(36): 32940-32954. DOI:10.1021/acsomega.3c04347
    5. Rashed, A.O., Huynh, C., Merenda, A. et al. Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors. Journal of Membrane Science, 2023. DOI:10.1016/j.memsci.2023.121475
    6. Jiang, J., Jin, B., Meng, L. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction | [基于电催化析氧反应的非贵金属催化剂研究进展]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380. DOI:10.13801/j.cnki.fhclxb.20220819.001
    7. Xu, J., Zhang, Y.-Q., Zhu, X.-B. et al. Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering | [利用缺陷工程提高碳毡电极对钒离子的氧化还原催化活性]. Journal of Central South University, 2022, 29(9): 2956-2967. DOI:10.1007/s11771-022-5129-z
    8. Mei, T., Gao, M., Wang, Y. et al. Effects of acid treatment and plasma micromachining on the surface properties of carbon fibers. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153261

    Other cited types(0)

Catalog

    Article views (252) PDF downloads (511) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return