Advanced Search+
Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
Citation: Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82

Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma

Funds: This work was financially supported by National Natural Science Foundation of China (Nos. 51777206 and 51541807), Natural Science Foundation of Anhui Province (Nos. 1708085MB47 and 1708085MA13), Foundation of Anhui Province Key Laboratory of Medical Physics and Technology (No. LMPT2017Y7BP0U1581), Doctoral Fund of Ministry of Education of China (No. 2017M612058), Specialized Research Fund for the Doctoral Program of Hefei University of Tech- nology (Nos. JZ2016HGBZ0768, JZ2016HGBZ0769, and JZ2017HGBZ0944).
More Information
  • Received Date: April 01, 2018
  • A typical quinolones antibiotic ciprofloxacin (CIP) in aqueous solution was degraded by a gas–liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive species (RS) generated in the gas phase were detected by the oscilloscope and the optical emission spectroscopy. The effects of various parameters on CIP degradation, i.e. input powers, initial concentrations addition of radical scavengers and pH values were investigated. With the increase of discharge power, the degradation efficiency increased but the energy efficiency significantly reduced. The degradation efficiency also reduced under high concentration of initial CIP conditions due to the competitive reactions between the plasma-induced RS with the degradation intermediates of CIP. Different radical scavengers (isopropanol and CCl4) on ·OH and H· were added into the reaction system and the oxidation effects of ·OH radicals have been proved with high degradation capacity on CIP. Moreover, the long-term degradation effect on CIP in the plasma-treated aqueous solution proved that the long-lived RS (H2O2 and O3, etc) might play key roles on the stay effect through multiple aqueous reactions leading to production of ·OH. The degradation intermediates were determined by the method of electrospray ionization (+)-mass spectroscopy, and the possible degradation mechanism were presented.
  • [1]
    Bu Q W et al 2013 J. Hazard. Mater. 262 189
    [2]
    Trovó A G et al 2008 J. Photochem. Photobiol. A 198 215
    [3]
    Esplugas S et al 2007 J. Hazard. Mater. 149 631
    [4]
    Watkinson A J et al 2009 Sci. Total Environ. 407 2711
    [5]
    Watkinson A J, Murby E J and Costanzo S D 2007 Water Res. 41 4164
    [6]
    Gao P P et al 2012 Water Res. 46 2355
    [7]
    Dodd M C et al 2005 Environ. Sci. Technol. 39 7065
    [8]
    Kümmerer K and Henninger A 2003 Clin. Microbiol. Infect. 9 1203
    [9]
    Calabrese E J and Baldwin L A 2003 Annu. Rev. Pharmacol. Toxicol. 43 175
    [10]
    De Bel E et al 2009 Chemosphere 77 291
    [11]
    Ghaly M Y et al 2001 Waste Manage. 21 41
    [12]
    Pi Y et al 2014 Chin. Sci. Bull. 59 2618
    [13]
    Liu C et al 2012 Water Res. 46 5235
    [14]
    Mahdi-Ahmed M and Chiron S 2014 J. Hazard. Mater. 265 41
    [15]
    van Doorslaer X et al 2013 Appl. Catal. B 138-139 333
    [16]
    Rice R G 1996 Ozone Sci. Eng. 18 477
    [17]
    Devi P, Das U and Dalai A K 2016 Sci. Total Environ. 571 643
    [18]
    de Souza Santos L V, Meireles A M and Lange L C 2015 J. Environ. Manage. 154 8
    [19]
    Aziz K H H et al 2017 Chem. Eng. J. 313 1033
    [20]
    Magureanu M et al 2010 Water Res. 44 3445
    [21]
    Reddy P M K et al 2013 Chem. Eng. J. 217 41
    [22]
    Zhou Z et al 2015 Chemosphere 119 S95
    [23]
    Gad-Allah T A, Ali M E M and Badawy M I 2011 J. Hazard. Mater. 186 751
    [24]
    An T C et al 2010 Appl. Catal. B 94 288
    [25]
    Shen J et al 2015 Plasma Process. Polym. 12 252
    [26]
    Zhang H et al 2015 Sci. Rep. 5 10031
    [27]
    Zhang Z L et al 2017 Plasma Chem. Plasma Process. 37 415
    [28]
    Joshi A A et al 1995 J. Hazard. Mater. 41 3
    [29]
    Zhang Z L et al 2018 Plasma Sci. Technol. 20 044009
    [30]
    Wang Y Y et al 2017 Plasma Sci. Technol. 19 025503
    [31]
    Lin J J et al 2002 Appl. Catal. B 39 157
    [32]
    Reddy P M K and Subrahmanyam C 2012 Ind. Eng. Chem. Res. 51 11097
    [33]
    Wang S H and Zhou S Q 2011 J. Hazard. Mater. 185 77
    [34]
    Olszewski P et al 2014 J. Hazard. Mater. 279 60
    [35]
    Wang T C et al 2016 J. Hazard. Mater. 302 65
    [36]
    Zhang G Y et al 2017 J. Hazard. Mater. 323 719
    [37]
    Zhu D et al 2014 Chemosphere 117 506
    [38]
    Rong S P, Sun Y B and Zhao Z H 2014 Chin. Chem. Lett. 25 187
    [39]
    Guo Z B et al 2017 Chem. Eng. J. 307 722
    [40]
    Feng J W et al 2009 J. Hazard. Mater. 164 838
    [41]
    Joshi R P and Thagard S M 2013 Plasma Chem. Plasma Process. 33 17
    [42]
    Chen J Y et al 2017 Sep. Purif. Technol. 179 135
    [43]
    Song W H et al 2008 J. Phys. Chem. A 112 7411
    [44]
    Lu N et al 2013 Chemosphere 91 1266
    [45]
    Francony A and Pétrier C 1996 Ultrason. Sonochem. 3 S77
    [46]
    Haag W R and Yao C C D 1992 Environ. Sci. Technol. 26 1005
    [47]
    Lee M and Oh J 2010 Ultrason. Sonochem. 17 207
    [48]
    Rong S P and Sun Y B 2015 J. Hazard. Mater. 287 317
    [49]
    Sahni M and Locke B R 2006 Ind. Eng. Chem. Res. 45 5819
    [50]
    Schuler R H, Neta P and Fessenden R W 1971 J. Phys. Chem. 75 1654
    [51]
    Boutamine Z, Hamdaoui O and Merouani S 2017 Res. Chem. Intermed. 43 1709
    [52]
    Albini A and Monti S 2003 Chem. Soc. Rev. 32 238
    [53]
    Yahya M S et al 2014 Chemosphere 117 447
    [54]
    Dirany A et al 2012 Environ. Sci. Technol. 46 4074
  • Related Articles

    [1]Mengyu WANG, Jianping LIANG, Ke LU, Zikai ZHOU, Qinghua LIU, Hao YUAN, Wenchun WANG, Dezheng YANG. Degradation of ciprofloxacin hydrochloride in a multiphase mixed system by subaquatic gas-liquid discharge plasma[J]. Plasma Science and Technology, 2024, 26(11): 115502. DOI: 10.1088/2058-6272/ad6706
    [2]Kun YANG, Hongwei SHEN, Yueyue LIU, Yang LIU, Pingji GE, Dezheng YANG. Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO2 catalyst[J]. Plasma Science and Technology, 2022, 24(9): 095504. DOI: 10.1088/2058-6272/ac6d41
    [3]Xinghao LIU (刘行浩), Cheng CHENG (程诚), Zimu XU (许子牧), Shuheng HU (胡淑恒), Jie SHEN (沈洁), Yan LAN (兰彦), Paul K CHU (朱剑豪). Degradation of tetracycline in water by gas– liquid plasma in conjunction with rGO-TiO2 nanocomposite[J]. Plasma Science and Technology, 2021, 23(11): 115503. DOI: 10.1088/2058-6272/ac1323
    [4]Kefeng SHANG (商克峰), Qi ZHANG (张琦), Na LU (鲁娜), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation[J]. Plasma Science and Technology, 2019, 21(7): 75502-075502. DOI: 10.1088/2058-6272/ab0d3c
    [5]Hong ZHAO (赵红), Chengwu YI (依成武), Rongjie YI (依蓉婕), Huijuan WANG (王慧娟), Lanlan YIN (尹兰兰), I N MUHAMMAD, Zhongfei MA (马中飞). Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge[J]. Plasma Science and Technology, 2018, 20(3): 35503-035503. DOI: 10.1088/2058-6272/aa97d1
    [6]Kefeng SHANG (商克峰), Hao WANG (王浩), Jie LI (李杰), Na LU (鲁娜), Nan JIANG (姜楠), Yan WU (吴彦). Activation of peroxydisulfate by gas–liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol[J]. Plasma Science and Technology, 2017, 19(6): 64017-064017. DOI: 10.1088/2058-6272/aa6616
    [7]Ying ZHAO (赵颖), Risheng YAO (姚日升), Yuedong MENG (孟月东), Jiaxing LI (李家星), Yiman JIANG (江贻满), Longwei CHEN (陈龙威). The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration[J]. Plasma Science and Technology, 2017, 19(3): 34001-034001. DOI: 10.1088/2058-6272/19/3/034001
    [8]LIN Qifu(林启富), NI Guohua(倪国华), JIANG Yiman(江贻满), WU Wenwei(吴文伟), MENG Yuedong(孟月东). Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(11): 1036-1041. DOI: 10.1088/1009-0630/16/11/07
    [9]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.
  • Cited by

    Periodical cited type(40)

    1. Yao, X., Xu, M., Cheng, X. et al. Degradation of CIP by circulating water-electrode DBD plasma: Degradation performance, key reactive species, and pathway analysis. Separation and Purification Technology, 2025. DOI:10.1016/j.seppur.2025.132357
    2. Dzimitrowicz, A., Terefinko, D., Babinska-Wensierska, W. et al. Application of a pm-rf-APGD-type plasma brush for deactivation of antibiotics from liquid solutions leads to impaired development of drug resistance by bacterial pathogens. Separation and Purification Technology, 2025. DOI:10.1016/j.seppur.2024.128543
    3. Verdini, F., Abramova, A., Boffa, L. et al. The unveiling of a dynamic duo: hydrodynamic cavitation and cold plasma for the degradation of furosemide in wastewater. Scientific Reports, 2024, 14(1): 6805. DOI:10.1038/s41598-024-57038-6
    4. Miruka, A.C., Gao, X., Zhang, Y. et al. Efficacy and mechanistic insights into dielectric barrier discharge plasma degradation of antiretroviral drug efavirenz. Journal of Environmental Chemical Engineering, 2024, 12(5): 113375. DOI:10.1016/j.jece.2024.113375
    5. Cyganowski, P., Terefinko, D., Motyka-Pomagruk, A. et al. The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry. Molecules, 2024, 29(12): 2910. DOI:10.3390/molecules29122910
    6. Miruka, A.C., Gao, X., Cai, L. et al. Effects of solution chemistry on dielectric barrier atmospheric non-thermal plasma for operative degradation of antiretroviral drug nevirapine. Science of the Total Environment, 2024. DOI:10.1016/j.scitotenv.2024.171369
    7. Balkhi, S.A.A., Allabakshi, S.M., Srikar, P.S.N.S.R. et al. Unwinding the correlation between atmospheric pressure plasma jet operating parameters and variation in antibiotic wastewater characteristics. Journal of Water Process Engineering, 2024. DOI:10.1016/j.jwpe.2024.105186
    8. He, J., Huang, S., Jiang, N. et al. Synergistic coupling of plasma with microbubbles for enhancing short-chain fatty acids production during sludge anaerobic fermentation: Mechanistic insights into reactive specie motivation and microbial community dynamics. Journal of Cleaner Production, 2024. DOI:10.1016/j.jclepro.2024.141495
    9. Wang, J., Zhang, J., Cheng, G. et al. Feasibility and mechanism of removing Microcystis aeruginosa and degrading microcystin-LR by dielectric barrier discharge plasma. Chemosphere, 2024. DOI:10.1016/j.chemosphere.2024.141436
    10. Graumans, M.H.F., Hoeben, W.F.L.M., Ragas, A.M.J. et al. In silico ecotoxicity assessment of pharmaceutical residues in wastewater following oxidative treatment. Environmental Research, 2024. DOI:10.1016/j.envres.2023.117833
    11. Ye, Y., Zhou, Z., Wang, S. et al. Characteristics and Stability of Pulsed Gas–Liquid Discharge with the Addition of Photocatalysts. Plasma Chemistry and Plasma Processing, 2024, 44(1): 335-352. DOI:10.1007/s11090-023-10426-8
    12. Yin, Y., Xu, H., Zhu, Y. et al. Recent Progress in Applications of Atmospheric Pressure Plasma for Water Organic Contaminants’ Degradation. Applied Sciences (Switzerland), 2023, 13(23): 12631. DOI:10.3390/app132312631
    13. Lu, F., Ouyang, W., He, Y. et al. Monitoring the dynamic process of non-thermal plasma decontaminated water with Raman spectroscopy real-time analysis system. Journal of Water Process Engineering, 2023. DOI:10.1016/j.jwpe.2023.104387
    14. Wang, J., Cheng, G., Zhang, J. et al. Feasibility and mechanism of recycling carbon resources from waste cyanobacteria and reducing microcystin toxicity by dielectric barrier discharge plasma. Journal of Hazardous Materials, 2023. DOI:10.1016/j.jhazmat.2023.132333
    15. Xu, Z., Chen, X., Jin, X. et al. Study on the effective removal of chlorpyrifos from water by dielectric barrier discharge (DBD) plasma: The influence of reactive species and different water components. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.144755
    16. Bhuiyan, M.S.A., Sarker, S., Amin, Z. et al. Infectious Bronchitis Virus (Gammacoronavirus) in Poultry: Genomic Architecture, Post-Translational Modifications, and Structural Motifs. Poultry, 2023, 2(3): 363-382. DOI:10.3390/poultry2030027
    17. Nandy, N., Pasupathi, A., Subramaniam, Y. et al. Eliminating ciprofloxacin antibiotic contamination from water with a novel submerged thermal plasma technology. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.138470
    18. Kyere-Yeboah, K., Bique, I.K., Qiao, X.-C. Advances of non-thermal plasma discharge technology in degrading recalcitrant wastewater pollutants. A comprehensive review. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.138061
    19. Ansari, M., Moussavi, G., Ehrampoosh, M.H. et al. A systematic review of non-thermal plasma (NTP) technologies for synthetic organic pollutants (SOPs) removal from water: Recent advances in energy yield aspects as their key limiting factor. Journal of Water Process Engineering, 2023. DOI:10.1016/j.jwpe.2022.103371
    20. Hu, K., Xie, Q., Wang, H. et al. Synergistic catalysis of Cu-CeO2@CA composite film in a circulating DBD plasma system and its effect on ciprofloxacin degradation. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2022.140895
    21. Fang, C., Wang, S., Shao, C. et al. Study of detoxification of methyl parathion by dielectric barrier discharge (DBD) non-thermal plasma at gas-liquid interface:mechanism and bio-toxicity evaluation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.135620
    22. Navaneetha Pandiyaraj, K., Vasu, D., Kandavelu, V. et al. Degradation of isothiazolin-3-one’s from an aqueous solution via a multi-pin nonthermal atmospheric pressure plasma and its toxicity analysis. Journal of Food Processing and Preservation, 2022, 46(10): e16461. DOI:10.1111/jfpp.16461
    23. Meng, F., Lin, C., Song, B. et al. Synergistic effect of underwater arc discharge plasma and Fe2O3-CoFe2O4 enhanced PMS activation to efficiently degrade refractory organic pollutants. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.120834
    24. Liu, Y., Deng, S., Chen, L. et al. Spectroscopic characterization of soil dissolved organic matter during dielectric barrier discharge (DBD) plasma treatment: Effects of discharge power, atmosphere and soil moisture content. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134145
    25. Chen, R., Zhang, J., Zhang, K. et al. In-situ degradation of organic pollutants by bioelectrical-Fenton reaction with a metal-free polyaniline-derived nitrogen-doped carbon nanofibre electrode. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.163710
    26. Morin-Crini, N., Lichtfouse, E., Fourmentin, M. et al. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 2022, 20(2): 1333-1375. DOI:10.1007/s10311-021-01379-5
    27. Nam, S.-N., Choong, C.E., Hoque, S. et al. Catalytic non-thermal plasma treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in aqueous solution: A review. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2021.133395
    28. Liu, X., Zhu, W., Zhang, F. et al. Study on removal of tetracycline in water by gas−liquid plasma and its mechanism | [气液相等离子体对水中四环素去除及机制研究]. Industrial Water Treatment, 2022, 42(2): 75-80. DOI:10.19965/j.cnki.iwt.2021-0527
    29. Liu, X., Yang, Z., Zhu, W. et al. Catalytic ozonation of chloramphenicol with manganese-copper oxides/maghemite in solution: Empirical kinetics model, degradation pathway, catalytic mechanism, and antibacterial activity. Journal of Environmental Management, 2022. DOI:10.1016/j.jenvman.2021.114043
    30. Aggelopoulos, C.A.. Recent advances of cold plasma technology for water and soil remediation: A critical review. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2021.131657
    31. Liu, X., Cheng, C., Xu, Z. et al. Degradation of tetracycline in water by gas-liquid plasma in conjunction with rGO-TiO2nanocomposite. Plasma Science and Technology, 2021, 23(11): 115503. DOI:10.1088/2058-6272/ac1323
    32. Meropoulis, S., Rassias, G., Bekiari, V. et al. Structure-Degradation efficiency studies in the remediation of aqueous solutions of dyes using nanosecond-pulsed DBD plasma. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2021.119031
    33. Tian, T., Rabat, H., Magureanu, M. et al. Electrical investigation of a pin-to-plane dielectric barrier discharge in contact with water. Journal of Applied Physics, 2021, 130(11): 113301. DOI:10.1063/5.0056654
    34. Magureanu, M., Bilea, F., Bradu, C. et al. A review on non-thermal plasma treatment of water contaminated with antibiotics. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.125481
    35. Miruka, A.C., Zhang, A., Wang, Q. et al. Degradation of glucocorticoids in water by a synergistic system of peroxymonosulfate, microbubble and dielectric barrier discharges. Journal of Water Process Engineering, 2021. DOI:10.1016/j.jwpe.2021.102175
    36. Wang, Q., Zhang, A., Li, P. et al. Degradation of aqueous atrazine using persulfate activated by electrochemical plasma coupling with microbubbles: removal mechanisms and potential applications. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124087
    37. Xin, Y., Sun, B., Zhu, X. et al. Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge. Energy, 2021. DOI:10.1016/j.energy.2020.118902
    38. Aggelopoulos, C.A., Meropoulis, S., Hatzisymeon, M. et al. Degradation of antibiotic enrofloxacin in water by gas-liquid nsp-DBD plasma: Parametric analysis, effect of H2O2 and CaO2 additives and exploration of degradation mechanisms. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2020.125622
    39. Liu, Y., Wang, C., Huang, K. et al. Degradation of glucocorticoids in water by dielectric barrier discharge and dielectric barrier discharge combined with calcium peroxide: performance comparison and synergistic effects. Journal of Chemical Technology and Biotechnology, 2019, 94(11): 3606-3617. DOI:10.1002/jctb.6164
    40. Liu, Y., Wang, C., Shen, X. et al. Degradation of glucocorticoids in aqueous solution by dielectric barrier discharge: Kinetics, mechanisms, and degradation pathways. Chemical Engineering Journal, 2019. DOI:10.1016/j.cej.2019.05.154

    Other cited types(0)

Catalog

    Article views (194) PDF downloads (333) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return