Advanced Search+
Kun YANG, Hongwei SHEN, Yueyue LIU, Yang LIU, Pingji GE, Dezheng YANG. Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO2 catalyst[J]. Plasma Science and Technology, 2022, 24(9): 095504. DOI: 10.1088/2058-6272/ac6d41
Citation: Kun YANG, Hongwei SHEN, Yueyue LIU, Yang LIU, Pingji GE, Dezheng YANG. Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO2 catalyst[J]. Plasma Science and Technology, 2022, 24(9): 095504. DOI: 10.1088/2058-6272/ac6d41

Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO2 catalyst

More Information
  • Corresponding author:

    Dezheng YANG, E-mail: yangdz@dlut.edu.cn

  • Received Date: December 02, 2021
  • Revised Date: April 29, 2022
  • Accepted Date: May 04, 2022
  • Available Online: December 07, 2023
  • Published Date: July 26, 2022
  • Recently, a plasma catalyst was employed to efficiently degrade antibiotic residues in the environment. In this study, the plasma generated in a packed bed dielectric barrier reactor combined with TiO2 catalyst is used to degrade the antibiotic tiamulin (TIA) loaded on the surface of simulated soil particles. The effects of applied voltage, composition of the working gas, gas flow rate and presence or absence of catalyst on the degradation effect were studied. It was found that plasma and catalyst can produce a synergistic effect under optimal conditions (applied voltage 25 kV, oxygen ratio 1%, gas flow rate 0.6 l min-1, treatment time 5 min). The degradation efficiency of the plasma combined with catalyst can reach 78.6%, which is 18.4% higher than that of plasma without catalyst. When the applied voltage is 30 kV, the gas flow rate is 1 l min-1, the oxygen ratio is 1% and the plasma combined with TiO2 catalyst treats the sample for 5 min the degradation efficiency of TIA reached 97%. It can be concluded that a higher applied voltage and longer processing times not only lead to more degradation but also result in a lower energy efficiency. Decreasing the oxygen ratio and gas flow rate could improve the degradation efficiency. The relative distribution and identity of the major TIA degradation product generated was determined by high-performance liquid chromatography–mass spectrometry analysis. The mechanism of TIA removal by plasma and TiO2 catalyst was analyzed, and the possible degradation path is discussed.

  • This work is supported by National Natural Science Foundation of China (Nos. 51967018, 11965018 and 51967017), the Science and Technology Development Fund of Xinjiang Production and Construction (No. 2019BC009) and the Innovation and Development Special Project of Shihezi University (No. CXFZ202105).

  • [1]
    An J et al 2015 Environ. Earth Sci. 74 5077 doi: 10.1007/s12665-015-4528-y
    [2]
    Shi H M et al 2020 Environ. Chem. Lett. 18 345 doi: 10.1007/s10311-019-00945-2
    [3]
    Sodhi K K et al 2021 SN Appl. Sci. 3 269 doi: 10.1007/s42452-020-04003-3
    [4]
    Lee D et al 2018 Chemosphere 209 901 doi: 10.1016/j.chemosphere.2018.06.125
    [5]
    Zheng C H et al 2014 J. Ind. Eng. Chem. 20 2761 doi: 10.1016/j.jiec.2013.11.004
    [6]
    Kim K S, Yang C S and Mok Y S 2013 Chem. Eng. J. 219 19 doi: 10.1016/j.cej.2012.12.079
    [7]
    Guo H et al 2019 Chemosphere 230 190 doi: 10.1016/j.chemosphere.2019.05.011
    [8]
    Aziz K H H et al 2017 Chem. Eng. J. 313 1033 doi: 10.1016/j.cej.2016.10.137
    [9]
    He D et al 2014 Chem. Eng. J. 258 18 doi: 10.1016/j.cej.2014.07.089
    [10]
    Zhou Z Y et al 2017 Chem. Eng. Process.: Process Intensif. 115 23 doi: 10.1016/j.cep.2017.02.006
    [11]
    Li J et al 2011 Plasma Sources Sci. Technol. 20 034019 doi: 10.1088/0963-0252/20/3/034019
    [12]
    Ma T J and Xu Y Q 2013 Adv. Mater. Res. 781–784 1637 doi: 10.4028/www.scientific.net/AMR.781-784.1637
    [13]
    Borak M D et al 2020 Clin. Toxicol. 58 287 doi: 10.1080/15563650.2019.1630632
    [14]
    Jiang B et al 2014 Chem. Eng. J. 236 348 doi: 10.1016/j.cej.2013.09.090
    [15]
    Scholtz V et al 2015 Biotechnol. Adv. 33 1108 doi: 10.1016/j.biotechadv.2015.01.002
    [16]
    Tang S F et al 2018 Chem. Eng. J. 337 446 doi: 10.1016/j.cej.2017.12.117
    [17]
    Zhao W F et al 2020 J. Environ. Chem. Eng. 8 102206 doi: 10.1016/j.jece.2018.02.014
    [18]
    Wang Y H et al 2017 J. Photochem. Photobiol. A 342 94 doi: 10.1016/j.jphotochem.2017.04.002
    [19]
    Hu J et al 2016 Chem. Eng. J. 293 216 doi: 10.1016/j.cej.2016.02.036
    [20]
    Sang W J et al 2019 Chemosphere 236 124401 doi: 10.1016/j.chemosphere.2019.124401
    [21]
    Sarangapani C et al 2019 Sci Rep. 9 3955 doi: 10.1038/s41598-019-40352-9
    [22]
    Wang L et al 2018 Plasma Process. Polym. 15 1700176 doi: 10.1002/ppap.201700176
    [23]
    Lukes P et al 2005 Res. Chem. Intermed. 31 285 doi: 10.1163/1568567053956734
    [24]
    Sohrabi A et al 2019 Desalin. Water Treat. 139 202 doi: 10.5004/dwt.2019.23297
    [25]
    Sokolov A et al 2018 Chem. Eng. J. 334 673 doi: 10.1016/j.cej.2017.10.071
    [26]
    Zhang G Y et al 2017 J. Hazard. Mater. 323 719 doi: 10.1016/j.jhazmat.2016.10.008
    [27]
    Zhang Q F et al 2018 Chemosphere 210 433 doi: 10.1016/j.chemosphere.2018.07.035
  • Related Articles

    [1]Xinghao LIU (刘行浩), Cheng CHENG (程诚), Zimu XU (许子牧), Shuheng HU (胡淑恒), Jie SHEN (沈洁), Yan LAN (兰彦), Paul K CHU (朱剑豪). Degradation of tetracycline in water by gas– liquid plasma in conjunction with rGO-TiO2 nanocomposite[J]. Plasma Science and Technology, 2021, 23(11): 115503. DOI: 10.1088/2058-6272/ac1323
    [2]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [3]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [4]Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
    [5]Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9
    [6]Hong ZHAO (赵红), Chengwu YI (依成武), Rongjie YI (依蓉婕), Huijuan WANG (王慧娟), Lanlan YIN (尹兰兰), I N MUHAMMAD, Zhongfei MA (马中飞). Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge[J]. Plasma Science and Technology, 2018, 20(3): 35503-035503. DOI: 10.1088/2058-6272/aa97d1
    [7]Ying ZHAO (赵颖), Risheng YAO (姚日升), Yuedong MENG (孟月东), Jiaxing LI (李家星), Yiman JIANG (江贻满), Longwei CHEN (陈龙威). The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration[J]. Plasma Science and Technology, 2017, 19(3): 34001-034001. DOI: 10.1088/2058-6272/19/3/034001
    [8]LIN Qifu(林启富), NI Guohua(倪国华), JIANG Yiman(江贻满), WU Wenwei(吴文伟), MENG Yuedong(孟月东). Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(11): 1036-1041. DOI: 10.1088/1009-0630/16/11/07
    [9]Nabila HADDOU, Mouffok Redounae GHEZZAR, Fatiha ABDELMALEK, et al.. Competitive Contribution of Catalyst and Adsorption Roles of TiO 2 on the Degradation of AO7 Dye During Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(9): 915-922. DOI: 10.1088/1009-0630/15/9/16
    [10]JIANG Nan(姜楠), LU Na (鲁娜), LI Jie(李杰), WU Yan(吴彦). Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Rreactor[J]. Plasma Science and Technology, 2012, 14(2): 140-146. DOI: 10.1088/1009-0630/14/2/11
  • Cited by

    Periodical cited type(3)

    1. Yuan, J., Xu, M., Yu, Y. et al. Impact of resonant magnetic perturbation on blob motion and structure using a gas puff imaging diagnostic on the HL-2A tokamak. Plasma Science and Technology, 2023, 25(9): 095103. DOI:10.1088/2058-6272/accbaa
    2. Wu, T., Xu, M., Nie, L. et al. Effect of edge turbulent transport on scrape-off layer width on HL-2A tokamak. Plasma Science and Technology, 2021, 23(2): 025101. DOI:10.1088/2058-6272/abd6b7
    3. Zweben, S.J., Fredrickson, E.D., Myra, J.R. et al. MHD-blob correlations in NSTX. Physics of Plasmas, 2020, 27(5): 052505. DOI:10.1063/5.0006515

    Other cited types(0)

Catalog

    Figures(16)

    Article views (102) PDF downloads (88) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return