Advanced Search+
Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
Citation: Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65

Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions

More Information
  • Received Date: July 25, 2018
  • In this study, dielectric barrier discharge plasma and ozone (O3) were combined to synergistically degrade trans-ferulic acid (FA), and the effect of water quality on FA degradation was studied. The results showed that 96.9% of FA was degraded after 40 min treatment by the plasma/O3 process. FA degradation efficiency increased with the pH values. The presence of suspended solid and humic acid inhibited FA degradation. FA degradation efficiency increased as the water temperature increased to 30 °C. However, the further increase in water temperature was adverse for FA degradation. Effects of common inorganic ions on FA degradation were also investigated. The addition of Cl - inhibited the FA degradation, while CO32 - had both negative and positive influences on FA degradation. NO-3 and SO42 - did not have significant effect on FA degradation. Fe3+ and Cu2+ benefited FA degradation through the Fenton-like and catalytic ozonation reactions.
  • [1]
    Mancuso C and Santangelo R 2014 Food Chem. Toxicol. 65 185
    [2]
    Andreozzi R et al 2008 J. Hazard. Mater. 152 870
    [3]
    Stratton G R et al 2017 Environ. Sci. Technol. 51 1643
    [4]
    Pérez M et al 2002 Water Res. 36 2703
    [5]
    Park T J et al 1999 Water Sci. Technol. 39 189
    [6]
    Kanakaraju D, Glass B D and Oelgem?ller M 2018 J. Environ. Manage. 219 189
    [7]
    Aljuboury D A D A et al 2015 J. Environ. Chem. Eng. 3 1117
    [8]
    Parrino F et al 2012 J. Catal. 295 254
    [9]
    Yadav B R and Garg A 2014 Chem. Eng. J. 252 185
    [10]
    Zhao Y et al 2017 Plasma Sci. Technol. 19 034001
    [11]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [12]
    Jiang N et al 2018 Chem. Eng. J. 350 12
    [13]
    Duan L J et al 2018 Appl. Catal. B 221 521
    [14]
    Meshref M N A et al 2017 Chemosphere 180 149
    [15]
    Yao W K et al 2018 Water Res. 138 106
    [16]
    Bradu C, Magureanu M and Parvulescu V I 2017 J. Hazard. Mater. 336 52
    [17]
    Malik M A et al 2002 Plasma Sources Sci. Technol. 11 236
    [18]
    Zhang Q R et al 2017 Sep. Purif. Technol. 187 334
    [19]
    Xiong F and Graham N J D 1992 Ozone: Sci. Eng. 14 263
    [20]
    Flores N et al 2016 J. Hazard. Mater. 319 3
    [21]
    Burlica R, Shih K Y and Locke B R 2010 Ind. Eng. Chem. Res. 49 6342
    [22]
    Yang B, Zhou M H and Lei L C 2005 Chemosphere 60 405
    [23]
    Ratpukdi T, Siripattanakul S and Khan E 2010 Water Res. 44 3531
    [24]
    Chen Z et al 2016 Chemosphere 150 731
    [25]
    Staehelin J and Hoigne J 1982 Environ. Sci. Technol. 16 621A
    [26]
    Jung Y M et al 2017 Chem. Eng. J. 312 30
    [27]
    Wang T C et al 2016 Water Res. 89 28
    [28]
    Yao W K et al 2017 Water Res. 108 373
    [29]
    de Witte B et al 2009 J. Hazard. Mater. 161 701
    [30]
    Liu Y N et al 2018 Chem. Eng. J. 345 679
    [31]
    Mota F L et al 2008 Ind. Eng. Chem. Res. 47 5182
    [32]
    Bian W J et al 2013 Chem. Eng. J. 219 385
    [33]
    Phattaranawik J, Leiknes T and Pronk W 2005 J. Membr. Sci. 247 153
    [34]
    Pak G et al 2016 Environ. Sci. Technol. 50 7590
    [35]
    Wu D H et al 2017 Electrochim. Acta 236 297
    [36]
    Wu Y Y et al 2010 J. Hazard. Mater. 179 533
    [37]
    de B Benetoli L O et al 2011 J. Braz. Chem. Soc. 22 1669
    [38]
    Ikhlaq A, Brown D R and Kasprzyk-Hordern B 2015 Appl. Catal. B 165 408
    [39]
    Chang J et al 2015 Chem. Eng. J. 276 97
    [40]
    Gu J et al 2017 Appl. Catal. B 200 585
    [41]
    Jung J et al 2003 Chemosphere. 51 881
    [42]
    Katsumura Y et al 1991 J. Phys. Chem. 95 4435
    [43]
    Liu Y J et al 2016 J. Hazard. Mater. 308 84
    [44]
    Li J, Sato M and Ohshima T 2007 Thin Solid Films 515 4283
    [45]
    Wang T et al 2018 Chem. Eng. J. 346 159
    [46]
    Wang T C et al 2018 Chem. Eng. J. 346 65
    [47]
    Liu Y N et al 2013 Plasma Chem. Plasma Process. 33 737
    [48]
    Ramjaun S N et al 2011 Electrochim. Acta 58 364
    [49]
    Tehrani-Bagha A R, Mahmoodi N M and Menger F M 2010 Desalination 260 34
    [50]
    Olmez-Hanci T and Arslan-Alaton I 2013 Chem. Eng. J. 224 10
    [51]
    Shan C et al 2018 Chem. Eng. J. 338 261
    [52]
    Zhang Y Q et al 2016 Chem. Eng. J. 302 526
    [53]
    Park J H et al 2018 Bioresour. Technol. 249 368
    [54]
    Akhtar J, Amin N S and Aris A 2011 Chem. Eng. J. 170 136
    [55]
    Li X F et al 2018 Chemosphere 195 336
    [56]
    Zhao L et al 2008 Appl. Catal. B 83 256
    [57]
    Hu Y et al 2018 J. Environ. Manage. 226 256
    [58]
    Yalfani M S et al 2011 Appl. Catal. B 107 9
    [59]
    Wang N N et al 2016 J. Environ. Chem. Eng. 4 762
    [60]
    Klu?áková M and Kalina M 2015 Colloids Surf. A 483 162
  • Related Articles

    [1]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [2]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [3]Lele WANG (王乐乐), XiutaoHUANG (黄修涛), Junfeng CHEN (陈俊峰), Shengming WANG (王圣明), Zhaoyang HU (胡朝阳), Minghai LIU (刘明海). Simulated and experimental studies on the array dielectric barrier discharge of water electrodes[J]. Plasma Science and Technology, 2017, 19(3): 35402-035402. DOI: 10.1088/2058-6272/19/3/035402
    [4]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11
    [5]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [6]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [7]GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09
    [8]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [9]ZHU Linan (朱丽楠), WANG Yongjun (王永军), REN Zhijun (任芝军), LIU Guifang (刘桂芳), et al.. The Degradation of Organic Pollutants by Bubble Discharge in Water[J]. Plasma Science and Technology, 2013, 15(10): 1053-1058. DOI: 10.1088/1009-0630/15/10/17
    [10]SONG Yushou(宋玉收), YAN Qiang(颜强), JING Tian(井田), XI Yinyin(席印印), LIU Huilan(刘辉兰). The Distortion of Energy Deposit Distribution of 12C Ions in Water[J]. Plasma Science and Technology, 2012, 14(7): 665-669. DOI: 10.1088/1009-0630/14/7/22
  • Cited by

    Periodical cited type(33)

    1. Zhang, T., Kyere-Yeboah, K., Ge, Y. et al. Effects of sodium persulfate and percarbonate on the degradation of 2, 4- dichlorophenol in a dielectric barrier discharge reactor. Chemical Engineering and Processing - Process Intensification, 2024. DOI:10.1016/j.cep.2024.109953
    2. Lavanya, A.. Treatment and nutrient recovery from landfill leachate by sequential persulfate oxidation and struvite precipitation: An evaluation of technical feasibility. Environmental Science and Pollution Research, 2024. DOI:10.1007/s11356-024-34825-2
    3. Ayadi, A., Jellouli Ennigrou, D., Proietto, F. et al. Electrochemical Degradation of Phenol in Aqueous Solutions Using Activated Carbon-ZnO Composite. Environmental Engineering Science, 2023, 40(9): 349-361. DOI:10.1089/ees.2023.0016
    4. Lou, J., An, J., Wang, X. et al. Enhanced degradation of oxytetracycline in aqueous solution by DBD plasma-coupled vacuum ultraviolet/ultraviolet (VUV/UVC) system. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139021
    5. Fan, Y., Wang, L., Sun, X. et al. The efficient removal towards tetracycline via photocatalytic persulfate activation using the heterostructured UiO-66-NH2-CA-Cu/g-C3N4 composite. Journal of Materials Science: Materials in Electronics, 2023, 34(24): 1739. DOI:10.1007/s10854-023-11142-x
    6. Yang, Y., Shen, H., Xu, L. Three-dimensional graphene anchored nZVI hybrid MnO2 as a dissolved oxygen activated Fenton-like catalyst for efficient mineralization of oxytetracycline. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.142781
    7. Kyere-Yeboah, K., Bique, I.K., Qiao, X.-C. Advances of non-thermal plasma discharge technology in degrading recalcitrant wastewater pollutants. A comprehensive review. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.138061
    8. Li, N., Jiang, H., Liu, J. et al. Adsorption Properties of Pb2+ by Ferric Hydroxide Loaded White Rot Fungi. Journal of Physics: Conference Series, 2023, 2597(1): 012015. DOI:10.1088/1742-6596/2597/1/012015
    9. Attri, P., Koga, K., Okumura, T. et al. Treatment of organic wastewater by a combination of non-thermal plasma and catalyst: a review. Reviews of Modern Plasma Physics, 2022, 6(1): 17. DOI:10.1007/s41614-022-00077-1
    10. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    11. Wang, Q., Huang, T., Du, J. et al. Enhancement of Uranium Recycling from Tailings Caused by the Microwave Irradiation-Induced Composite Oxidation of the Fe-Mn Binary System. ACS Omega, 2022, 7(28): 24574-24586. DOI:10.1021/acsomega.2c02392
    12. He, Y., Sang, W., Lu, W. et al. Recent Advances of Emerging Organic Pollutants Degradation in Environment by Non-Thermal Plasma Technology: A Review. Water (Switzerland), 2022, 14(9): 1351. DOI:10.3390/w14091351
    13. Yao, X., Guo, J.-S., Zhang, Y.-T. Unveiling pathways of oxytetracycline degradation induced by cold atmospheric plasma. AIP Advances, 2022, 12(3): 035046. DOI:10.1063/5.0085605
    14. Parvulescu, V.I., Epron, F., Garcia, H. et al. Recent Progress and Prospects in Catalytic Water Treatment. Chemical Reviews, 2022, 122(3): 2981-3121. DOI:10.1021/acs.chemrev.1c00527
    15. Magureanu, M., Bilea, F., Bradu, C. et al. A review on non-thermal plasma treatment of water contaminated with antibiotics. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2021.125481
    16. Sang, W., Mei, L., Zhan, C. et al. Removal of N, N-dimethylformamide by dielectric barrier discharge plasma combine with manganese activated carbon. Environmental Science and Pollution Research, 2021, 28(31): 41698-41711. DOI:10.1007/s11356-021-13729-5
    17. Fan, J., Wu, H., Liu, R. et al. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. Environmental Science and Pollution Research, 2021, 28(3): 2522-2548. DOI:10.1007/s11356-020-11222-z
    18. Huang, H., Guo, G., Tang, S. et al. Persulfate oxidation for alternative sludge treatment and nutrient recovery: An assessment of technical and economic feasibility. Journal of Environmental Management, 2020. DOI:10.1016/j.jenvman.2020.111007
    19. Tran, M.L., Nguyen, C.H., Tran, T.T.V. et al. One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: Roles of morphology changes and Pt catalysis. Journal of the Taiwan Institute of Chemical Engineers, 2020. DOI:10.1016/j.jtice.2020.05.001
    20. Sun, W., Sun, Y., Zhu, H. et al. Catalytic activity and evaluation of Fe-Mn@Bt for ozonizing coal chemical biochemical tail water. Separation and Purification Technology, 2020. DOI:10.1016/j.seppur.2020.116524
    21. Tang, S., Tang, J., Yuan, D. et al. Elimination of humic acid in water: Comparison of UV/PDS and UV/PMS. RSC Advances, 2020, 10(30): 17627-17634. DOI:10.1039/d0ra01787f
    22. Tang, S., Wang, Z., Yuan, D. et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate. International Journal of Electrochemical Science, 2020, 15(3): 2470-2480. DOI:10.20964/2020.03.09
    23. Chen, L., Sun, Y. Catalytic ozone oxidation treatment of wastewater from a pesticide enterprise. Desalination and Water Treatment, 2020. DOI:10.5004/dwt.2020.26482
    24. Li, J., Li, R., Zou, L. et al. Efficient degradation of norfloxacin and simultaneous electricity generation in a persulfate-photocatalytic fuel cell system. Catalysts, 2019, 9(10): 835. DOI:10.3390/catal9100835
    25. Li, B., Udugama, I.A., Mansouri, S.S. et al. An exploration of barriers for commercializing phosphorus recovery technologies. Journal of Cleaner Production, 2019. DOI:10.1016/j.jclepro.2019.05.042
    26. Yao, X., Jiang, N., Peng, B. et al. DC discharge with high secondary electron emission oxide cathode: Effects of gas pressure and oxide cathode structure. Vacuum, 2019. DOI:10.1016/j.vacuum.2019.04.035
    27. Jiang, N., Qiu, C., Guo, L. et al. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor. Journal of Hazardous Materials, 2019. DOI:10.1016/j.jhazmat.2019.02.087
    28. Liu, J., Wang, H., Wang, L. et al. Defect-engineered cobalt-based solid catalyst for high efficiency oxidation of sulfite. Chemical Engineering Science, 2019. DOI:10.1016/j.ces.2018.12.011
    29. Chen, H., Zhang, S., Zhao, Z. et al. Application of Dopamine Functional Materials in Water Pollution Control | [多巴胺功能材料在水污染控制中的应用]. Progress in Chemistry, 2019, 31(4): 571-579. DOI:10.7536/PC180823
    30. Tang, S., Yuan, D., Rao, Y. et al. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. Journal of Hazardous Materials, 2019. DOI:10.1016/j.jhazmat.2018.12.056
    31. Huang, H., Zhang, D., Wang, W. et al. Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources. Science of the Total Environment, 2019. DOI:10.1016/j.scitotenv.2018.11.259
    32. Li, N., Tang, S., Rao, Y. et al. Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell. Electrochimica Acta, 2019. DOI:10.1016/j.electacta.2018.12.063
    33. Huang, H., Li, B., Li, J. et al. Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater. Environmental Pollution, 2019. DOI:10.1016/j.envpol.2018.11.046

    Other cited types(0)

Catalog

    Article views (154) PDF downloads (378) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return