Advanced Search+
WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
Citation: WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09

Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

Funds: supported by National Natural Science Foundation of China (Nos. 51366012 and 11105067), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 20133BCB23008), Natural Science Foundation of Jiangxi, China (No. 20151BAB206047) and Jiangxi Province Higher School Science and Technology Landing Plan of China (No. KJLD-14015)
More Information
  • Received Date: March 15, 2015
  • A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson’s equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26×104 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O2+,O-3 and O2(1Δg) in pulsed DBD in air, respectively. N2O has the largest density among nitrogenn oxides. e and N2+ densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O+2 , O, O3, N2(A3Σ) and N2O densities reach maximum values in the vicinity of the anode.
  • 1 Fernandez-Rueda A, Pontiga F, Soria C, et al. 2005, Numerical simulation of wire-to-cylinder nega- tive corona discharge in dry air. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Nashville, Tennessee, USA 2 Wang P, Chen J. 2009, J. Phys. D: Appl. Phys., 42: 035202 3 Chen J, Davidson J H. 2002, Plasma Chem. Plasma Process., 22: 495 4 Chen J, Davidson J H. 2003, Plasma Chem. Plasma Process., 23: 501 5 Ono R, Oda T. 2003, J. Appl. Phys., 93: 5876 6 Chen J, Wang P. 2005, IEEE Trans. Plasma Sci., 33:808 7 Eliasson B, Kogelschatz U. 1991, IEEE Trans. Plasma Sci., 19: 309 8 Braun D, Pietsch G. 1991, J. Phys. D: Appl. Phys., 24: 564 9 Kossyi I, Kostinsky A Y, Matveyev A, et al. 1992, Plasma Sources Sci. Technol., 1: 207 10 Ionikh Y, Meshchanov A, R¨ opcke J, et al. 2006, Chem.Phys., 322: 411 11 Hadji K, Hadji A, Hadj-Ziane S, et al. 2008, Plasma Devices Oper., 16: 75 12 Eliasson B, Kogelschatz U. 1986, Basic data for modelling of electrical discharges in gases: oxygen. ABB Asea Brown Boveri, Baden, German 13 Poggie J, Adamovich I, Bisek N, et al. 2013, Plasma Sources Sci. Technol., 22: 015001 14 Loiseau J, Lacassie F, Monge C, et al. 1994, J. Phys.D: Appl. Phys., 27: 63 15 Yagi S, Tanaka M. 1979, J. Phys. D: Appl. Phys., 12:1509 16 Pintassilgo C, Loureiro J, Guerra V. 2005, J. Phys. D:Appl. Phys., 38: 417 17 Peyrous R. 1990, Ozone-Sci. Eng., 12: 41 18 Soria C, Pontiga F, Castellanos A. 2004, Plasma Sources Sci. Technol., 13: 95 19 Yanallah K, Pontiga F, Castellanos A. 2011, J. Phys. D: Appl. Phys., 44: 055201 20 Yanallah K, Pontiga F, Fernandez-Rueda A, et al. 2009, J. Phys. D: Appl. Phys., 42: 065202 21 Komuro A, Ono R, Oda T. 2012, J. Phys. D: Appl.Phys., 45: 265201 22 Eichwald O, Ducasse O, Dubois D, et al. 2008, J. Phys.D: Appl. Phys., 41: 234002 23 Ebert U, Sentman D D. 2008, J. Phys. D: Appl. Phys.,41: 230301 24 Hagelaar G, De Hoog F, Kroesen G. 2000, Phys. Rev.E, 62: 1452 25 Boeuf J, Pitchford L. 1995, Phys. Rev. E, 51: 1376 26 Farouk T, Farouk B, Staack D, et al. 2006, Plasma Sources Sci. Technol., 15: 676 27 Wei L S, Yuan D K, Zhang Y F, et al. 2014, Vacuum,104: 61 28 Benyamina M, Belasri A, Khodja K. 2014, Ozone-Sci.Eng., 36: 253 29 Mennad B, Harrache Z, Aid D A, et al. 2010, Curr.Appl. Phys., 10: 1391 30 Eliasson B, Hirth M, Kogelschatz U. 1987, J. Phys. D:Appl. Phys., 20: 1421 31 Yanallah K, Pontiga F, Chen J. 2013, J. Phys. D: Appl.Phys., 46: 345202 32 Wang D, Jikuya M, Yoshida S, et al. 2007, IEEE Trans.Plasma Sci., 35: 1098 33 Won J Y, Williams P. 2002, J. Phys. D: Appl. Phys.,35: 205
  • Related Articles

    [1]Erhao GAO, Keying GUO, Qi JIN, Li HAN, Ning LI, Zuliang WU, Shuiliang YAO. NaCl aqueous solution as a novel electrode in a dielectric barrier discharge reactor for highly efficient ozone generation[J]. Plasma Science and Technology, 2023, 25(7): 075502. DOI: 10.1088/2058-6272/acbef6
    [2]Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
    [3]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [4]Chuang WANG (王闯), Xi CHEN (陈曦), Kai TANG (唐凯), Pengfei LI (李鹏斐). Study on the discharge mechanism and EM radiation characteristics of Trichel pulse discharge in air[J]. Plasma Science and Technology, 2019, 21(5): 55402-055402. DOI: 10.1088/2058-6272/ab03ab
    [5]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [6]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [7]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [8]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [9]Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
    [10]Xuewei ZHAO (赵雪维), Yonggang YU (余永刚), Shanshan MANG (莽珊珊), Xiaochun XUE (薛晓春). Study of the expansion characteristics of a pulsed plasma jet in air[J]. Plasma Science and Technology, 2017, 19(4): 45402-045402. DOI: 10.1088/2058-6272/aa596e

Catalog

    Article views (477) PDF downloads (1482) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return